Với a thỏa mãn sin a 2/3 ;0° < a < 90° . Giá trị của biểu thực. P =tana – 3cosa ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{2sin\alpha-3cos\alpha}{3sin\alpha+2cos\alpha}\\ =\dfrac{\dfrac{2sin\alpha}{cos\alpha}-\dfrac{3cos\alpha}{cos\alpha}}{\dfrac{3sin\alpha}{cos\alpha}+\dfrac{2cos\alpha}{cos\alpha}}\\ =\dfrac{2tan\alpha-3}{3tan\alpha+2}=\dfrac{2.3-3}{3.3+2}=\dfrac{3}{11}\)
Ta có: \(1 + {\tan ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}\quad (\alpha \ne {90^o})\)
\( \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = 1 + {3^2} = 10\)
\( \Leftrightarrow {\cos ^2}\alpha = \frac{1}{{10}} \Leftrightarrow \cos \alpha = \pm \frac{{\sqrt {10} }}{{10}}\)
Vì \({0^o} < \alpha < {180^o}\) nên \(\sin \alpha > 0\).
Mà \(\tan \alpha = 3 > 0 \Rightarrow \cos \alpha > 0 \Rightarrow \cos \alpha = \frac{{\sqrt {10} }}{{10}}\)
Lại có: \(\sin \alpha = \cos \alpha .\tan \alpha = \frac{{\sqrt {10} }}{{10}}.3 = \frac{{3\sqrt {10} }}{{10}}.\)
\( \Rightarrow P = \dfrac{{2.\frac{{3\sqrt {10} }}{{10}} - 3.\frac{{\sqrt {10} }}{{10}}}}{{3.\frac{{3\sqrt {10} }}{{10}} + 2.\frac{{\sqrt {10} }}{{10}}}} = \dfrac{{\frac{{\sqrt {10} }}{{10}}\left( {2.3 - 3} \right)}}{{\frac{{\sqrt {10} }}{{10}}\left( {3.3 + 2} \right)}} = \dfrac{3}{{11}}.\)
Chọn B.
Ta có: 1 + cos2α = 2cos2α và sin2α = 2sinα.cosα.
Mà tanα = 2 nên cot α = 1/2
Suy ra:
\(A=cos^2x.sin^2x\left(sin^4x+cos^4x\right)=\dfrac{1}{4}\left(2sinx.cosx\right)^2\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)
\(=\dfrac{1}{4}sin^22x\left(1-\dfrac{1}{2}sin^22x\right)=\dfrac{1}{8}\left(1-cos4x\right)\left(1-\dfrac{1}{2}\left(1-cos4x\right)\right)\)
\(=\dfrac{1}{8}\left(1-\dfrac{2}{3}\right)\left(1-\dfrac{1}{2}\left(1-\dfrac{2}{3}\right)\right)=\dfrac{5}{144}\)
\(sina=\dfrac{2}{3}\left(0< a< 90^o\right)\)
\(sin^2a+cos^2b=1\Rightarrow cos^2a=1-sin^2a=1-\dfrac{4}{9}=\dfrac{5}{9}\)
\(\Rightarrow cosa=\dfrac{\sqrt{5}}{3}\left(0< a< 90^o\Rightarrow cosa>0\right)\)
\(tana=\dfrac{sina}{cosa}=\dfrac{\dfrac{2}{3}}{\dfrac{\sqrt{5}}{3}}=\dfrac{2}{\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)
\(P=tana-3cosa=\dfrac{2\sqrt{5}}{5}-3.\dfrac{\sqrt{5}}{3}=\dfrac{2\sqrt{5}}{5}-\sqrt{5}=\dfrac{-3\sqrt{5}}{5}\)