trên tia ox xác định điểm Cvà I sao cho OC < OI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trên tia Ox, vì OA = a(cm), OB = b(cm) mà b < a nên A nằm giữa 2 tia B và X.
Nên OA + AB = OA
Hay: b + AB = a
=> AB = a - b
b) Ta biết: OM = 1/2 (a + b) = (a + b)/2 = (a + 2b - b)/2 = 2b/2 + a - b/2 = b + (a - b)/2
Mà: OB = b(cm); AB = a - b
=> Om = Ob + AB/2
=> M là điểm nằm trên Ab sao cho AM = MB
a) Xét \(\Delta\)OAD và \(\Delta\)OCB có:
OA = OC (gt)
\(\widehat{O}\) chung
OD = OB (gt)
=> \(\Delta\)OAD = \(\Delta\)OCB (c.g.c)
=> AD = CB (2 cạnh t/ư)
b) Vì \(\Delta\)OAD = \(\Delta\)OCB (câu a)
=> \(\widehat{ODA}\) = \(\widehat{OBC}\) (2 góc t/ư)
hay \(\widehat{CDI}\) = \(\widehat{ABI}\)
và \(\widehat{OAD}\) = \(\widehat{OCB}\) (2 góc t/ư)
Ta có: \(\widehat{OAD}\) + \(\widehat{IAB}\) = 180o (kề bù)
\(\widehat{OCB}\) + \(\widehat{ICD}\) = 180o (kề bù)
mà \(\widehat{OAD}\) = \(\widehat{OCB}\)
=> \(\widehat{IAB}\) = \(\widehat{ICD}\) Lại có: OA + AB = OB OC + CD = OD mà OA = OC; OB = OD => AB = CD Xét \(\Delta\)BAI và \(\Delta\)DCI có:\(\widehat{IAB}\) = \(\widehat{ICD}\) (c/m trên)
BA = DC (c/m trên)
\(\widehat{CDI}\) = \(\widehat{ABI}\) (c/m trên)
=> \(\Delta\)BAI = \(\Delta\)DCI (g.c.g)
=> AI = IC (2 cạnh t/ư)
c) Gọi giao điểm của OI và BD là E.
Do \(\Delta\)BAI = \(\Delta\)DCI (câu b)
=> AI = CI (2 cạnh t/ư)
Xét \(\Delta\)AOI và \(\Delta\)COI có:
AO = CO (gt)
OI chung
AI = CI (c/m trên)
=> \(\Delta\)AOI = \(\Delta\)COI (c.c.c)
=> \(\widehat{AOI}\) = \(\widehat{COI}\) (2 góc t/ư)
hay \(\widehat{BOE}\) = \(\widehat{DOE}\)
Xét \(\Delta\)BEO và \(\Delta\)DEO có:
BO = DO (gt)
\(\widehat{BOE}\) = \(\widehat{DOE}\) (c/m trên)
OE chung
=> \(\Delta\)BEO = \(\Delta\)DEO (c.g.c)
=> \(\widehat{BEO}\) = \(\widehat{DEO}\) (2 góc t/ư)
mà \(\widehat{BEO}\) + \(\widehat{DEO}\) = 180o (kề bù)
=> \(\widehat{BEO}\) = \(\widehat{DEO}\) = 90o
Do đó OE \(\perp\) BD hay OI \(\perp\) BD.
a,Xét \(\Delta AOD\)và\(\Delta COB\)có
\(OD=OB\)
\(\widehat{AOC}\)là góc chung
\(OA=OC\)
\(\rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\)
\(\rightarrow AD=BC\)( 2 cạnh tương ứng )
b,Ta có \(\left\{{}\begin{matrix}OB=OD\\OA=OC\end{matrix}\right.\rightarrow OB-OA=OD-OC\)
Hay \(AB=CD\)
Mặt khác : \(\Delta AOB=\Delta COB\)
\(\Rightarrow\widehat{ODA}=\widehat{OBC}hay\widehat{CDI}=\widehat{ABI}\)
\(\Delta AOD=\Delta COB\)
\(\Rightarrow\widehat{AOD}=\widehat{OCD}hay\widehat{OAI}=\widehat{OCI}\)
\(\widehat{OAI}=\widehat{OCI}=180^0\)
\(\widehat{DCI}+\widehat{OCI}=180^0\)
Mà \(\widehat{OAI}=\widehat{OCI}\Rightarrow\widehat{BAI}=\widehat{DCI}\)
Xét \(\Delta AIB\)và\(\Delta CID\)có
\(\widehat{ABI}=\widehat{CDI}\)
\(AB=CD\)
\(\widehat{BAI}=\widehat{DCI}\)
\(\Rightarrow\Delta ABI=\Delta CDI\)
\(\Rightarrow AI=CI\)(2 cạnh tương ứng )
TRÊN TIA Ox CÓ OA > OB ( 7 > 3 )
=> B NẰM GIỮA 2 ĐIỂM O,A
=> O KO PHẢI LÀ TRUNG ĐIỂM CỦA O,B
B) TRÊN TIA Ox CÓ ĐIỂM B NẰM GIỮA 2 ĐIỂM O , A
TA CÓ : OB + AB = OA
3 + AB = 7
AB = 7-3
AB = 4
C )
TRÊN TIA ĐỐI CỦA Ox CÓ OC = OB = 3
=> O LÀ TRUNG DIỂM CỦA ĐOẠN THẲNG CB
cho hình đi bn