B1: Cho 2 đường thẳng xy, mn cắt nhau tại A. Biết góc xAm + góc yAn= 130 độ. Tính số đo 4 góc tạo thành
B2: Cho 2 đường thẳng xy và zt cắt nhau tại O. Biết góc xOz + góc zOt + góc tOy = 220 độ. Tính số đo 4 góc tạo thành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Bài giải
A B C D O
Ta có : \(\widehat{AOC}=\widehat{BOD}\) ( hai góc đối đỉnh ) mà \(\widehat{AOC}+\widehat{BOD}=100^o\)\(\Rightarrow\text{ }\widehat{AOC}=\widehat{BOD}=\frac{1}{2}\cdot100^o=50^o\)
\(\widehat{AOD}=\widehat{BOC}\) ( hai góc đối đỉnh ) mà \(\widehat{AOD}\) kề bù với \(\widehat{BOD}\) nên \(\widehat{AOD}+\widehat{BOD}=180^o\)
\(\Rightarrow\text{ }\widehat{AOD}+50^o=180^o\text{ }\Rightarrow\text{ }\widehat{AOD}=130^o\)
\(\Rightarrow\text{ }\widehat{AOD}=\widehat{BOC}=130^o\)
Bài 2 : Bài giải
N P Q M O
Ta có:
\(\widehat{MOP}=\widehat{NOQ}\) ( hai góc đối đỉnh )
\(\widehat{NOP}=\widehat{MOQ}\)( hai góc đối đỉnh )
Ta lại có : \(\widehat{MOP}\text{ và }\widehat{NOP}\) là 2 góc kề bù nên \(\widehat{MOP}+\widehat{NOP}=180^o\)
Mà \(\widehat{NOP}=\frac{2}{3}\widehat{MOP}\) nên \(\widehat{MOP}+\frac{2}{3}\widehat{MOP}=180^o\)
\(\Rightarrow\text{ }\frac{5}{3}\widehat{MOP}=180^o\text{ }\Rightarrow\text{ }\widehat{MOP}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\frac{2}{3}\cdot108^o=72^o\)
\(\Rightarrow\text{ }\widehat{MOP}=\widehat{NOQ}=108^o\)
\(\Rightarrow\text{ }\widehat{NOP}=\widehat{MOQ}=72^o\)
Vì O1+O2+O3+O4=360(tổng 2 cặp góc kề bù)
mà O1+O2+O3=290 => O4=70
Vì O4+O3=180 (2 góc kề bù)
O4=70 => O3=110
Vì O4=O1(2 góc đối đỉnh) =>O1=70
Vì O2=O3(2 góc đối đỉnh) => O2=110
bài dễ sao bạn kb làm à
Ta có :
`@)` `\hat{x'Oy'} = \hat{xOy} = 100^@` (hai góc đối đỉnh)
`@)` `\hat{xOy + \hat{xOy'} = 180^@`
hay `100 +` `\hat{xOy'} = 180^@`
`⇒\hat{xOy'} = 180^@ - 100^@ = 80^@`
`@)` `\hat{x'Oy} = \hat{xOy'} = 80^@` (hai góc đối đỉnh)
A B C D O
AÔC và BÔD là 2 góc đối đỉnh nên chúng bằng nhau, do đó có:
\(AÔC=BÔD=\frac{130^o}{2}=65^o\)
Có: AÔC + CÔB = 180 o ( 2 góc kề bù)
65o + CÔB = 180o
CÔB=180o-65o=115o
CÔB đối đỉnh với AÔD nên AÔD=CÔB=115o
Bài 1:Ta có: \(\widehat{xAm}+\widehat{yAn}=130^0\)
mà \(\widehat{xAm}=\widehat{yAn}\)(hai góc đối đỉnh)
nên \(\widehat{xAm}=\widehat{yAn}=\dfrac{130^0}{2}=65^0\)
Ta có: \(\widehat{xAm}+\widehat{xAn}=180^0\)(hai góc kề bù)
=>\(\widehat{xAn}+65^0=180^0\)
=>\(\widehat{xAn}=115^0\)
=>\(\widehat{yAm}=115^0\)
Bài 2:
Ta có: \(\widehat{xOz}+\widehat{zOt}+\widehat{tOy}=220^0\)
=>\(\widehat{xOz}+\widehat{tOy}=40^0\)
mà \(\widehat{xOz}=\widehat{tOy}\)(hai góc đối đỉnh)
nên \(\widehat{xOz}=\widehat{tOy}=\dfrac{40^0}{2}=20^0\)
Ta có: \(\widehat{xOz}+\widehat{xOt}=180^0\)(hai góc kề bù)
=>\(\widehat{xOt}=180^0-20^0=160^0\)
=>\(\widehat{yOz}=160^0\)