tìm x,y nguyên dương và \(x\ge1\)thỏa mãn \(y=\sqrt[3]{9+\sqrt{x-1}}+\sqrt[3]{9-\sqrt{x-1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24
\(\begin{cases}\sqrt{xy}+\frac{1}{\sqrt{xy}}=\frac{5}{2}\\\sqrt{x}+\sqrt{y}+\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=\frac{9}{2}\end{cases}\)
<=>\(\begin{cases}xy+1=\frac{5\sqrt{xy}}{2}\\\sqrt{xy}.\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}+\sqrt{y}=\frac{9\sqrt{xy}}{2}\end{cases}\)
Đặt P=\(\sqrt{xy}\);S=\(\sqrt{x}+\sqrt{y}\)(S2\(\ge\)4P)
Ta có HPT: \(\begin{cases}P^2+1=\frac{5P}{2}\\S.P+P=\frac{9P}{2}\end{cases}\)
Tới đây dễ tự làm
Lời giải:
Áp dụng BĐT AM-GM:
$x^3+1=(x+1)(x^2-x+1)\leq \left(\frac{x+1+x^2-x+1}{2}\right)^2=\frac{(x^2+2)^2}{4}$
$\Rightarrow \sqrt{x^3+1}\leq \frac{x^2+2}{2}$
$\Rightarrow \frac{1}{\sqrt{x^3+1}}\geq \frac{2}{x^2+2}$. Tương tự với các phân thức khác và cộng theo vế:
$\sum \frac{1}{\sqrt{x^3+1}}\geq 2\sum \frac{1}{x^2+2}$
Áp dụng BĐT Cauchy-Schwarz:
$\sum \frac{1}{x^2+2}\geq \frac{9}{x^2+y^2+z^2+6}=\frac{9}{12+6}=\frac{1}{2}$
$\Rightarrow \sum \frac{1}{\sqrt{x^3+1}}\geq 2.\frac{1}{2}=1$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=2$
Bất đẳng thức cần chứng minh tương đương:
\(\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+zx}+\sqrt{z\left(x+y+z\right)+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(\Leftrightarrow\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(y+z\right)\left(y+x\right)}+\sqrt{\left(z+x\right)\left(z+y\right)}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\). (1)
Theo bđt Bunhiakowski:
\(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\).
Tương tự: \(\sqrt{\left(y+z\right)\left(y+x\right)}\ge y+\sqrt{zx}\); \(\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}\).
Cộng vế với vế và kết hợp với gt x + y + z = 1 ta có (1) đúng.
Vậy ta có đpcm.
\(\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\)
Tương tự:
\(\sqrt{y+zx}\ge y+\sqrt{zx}\) ; \(\sqrt{z+xy}\ge z+\sqrt{xy}\)
Cộng vế với vế:
\(VT\ge\left(x+y+z\right)+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=...\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)
Đặt vế trái của BĐT cần chứng minh là P
Ta có:
\(P=\dfrac{\sqrt{xy+\left(x+y+z\right)z}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}=\dfrac{\sqrt{\left(x+z\right)\left(y+z\right)}+\sqrt{2\left(x^2+y^2\right)}}{1+\sqrt{xy}}\)
\(P\ge\dfrac{\sqrt{\left(\sqrt{xy}+z\right)^2}+\sqrt{\left(x+y\right)^2}}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+x+y+z}{1+\sqrt{xy}}=\dfrac{\sqrt{xy}+1}{1+\sqrt{xy}}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y\)
Ta có x + y + z = 1 nên z = 1 - x - y.
Bất đẳng thức cần chứng minh tương đương:
\(\dfrac{\sqrt{xy+z\left(x+y+z\right)}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
\(\Leftrightarrow\sqrt{\left(z+x\right)\left(z+y\right)}+\sqrt{2x^2+2y^2}\ge1+\sqrt{xy}\).
Áp dụng bất đẳng thức Cauchy - Schwarz:
\(\left(z+x\right)\left(z+y\right)\ge\left(\sqrt{z}.\sqrt{z}+\sqrt{x}.\sqrt{y}\right)^2=\left(z+\sqrt{xy}\right)^2\)
\(\Rightarrow\sqrt{\left(z+x\right)\left(z+y\right)}\ge z+\sqrt{xy}=\sqrt{xy}-x-y+1\); (1)
\(\sqrt{2x^2+2y^2}=\sqrt{\left(1+1\right)\left(x^2+y^2\right)}\ge x+y\). (2)
Cộng vế với vế của (1), (2) ta có đpcm.