Tìm GTLN của biểu thức: \(A=\frac{1}{x^2-6x+17}\)
P/s: Ai giải được thì giải hộ nhé, cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
ba - ab = 72
10b + a - 10a - b = 72
9b - 9a = 72
b-a = 8
=> b = 9 <=> a=1
b=8 <=> a=0 ( ko thỏa mãn)
gấp thì cx phải cho mik nha
Chưa đúng thì phải . Với lại cô giáo mình k ra đề s đâu
C = 2x^2 + y^2 + 2xy - 4x - 2016
C = (x^2 + 2xy + y^2) + (x^2 - 4x + 4) - 2020
C = (x + y)^2 + (x - 2)^2 - 2020
(x+y)^2 > 0; (x - 2)^2 > 0
C > -2020
dấu "=" xảy ra khi x + y = 0 và x - 2 = 0
<=> x = 2; y = -2
\(x^2+2\ge2\Rightarrow\frac{6}{x^2+2}\le\frac{6}{2}=3\)
Vay Max D=3, dau = xay ra khi x=0
áp dụng t/c dãy tỉ số bằng nhau ta có:
1+3y/12=1+7y/4x=2+10y/12+4x=2(1+5y)/2(6+2x)
=1+5y/6+2x
do đó : 1+5y/6+2x=1+5y/5x<=>6+2x=5x<=>6=5x-2x
<=>3x=6=>x=2
Vậy x=2. chúc bạn học tốt
Em thì cứ Bunyakovski thôi ạ:( ko chắc..
Theo BĐT Bunyakovski, ta có: \(\left(\sqrt{2x^2}^2+\sqrt{3y^2}^2\right)\left(\sqrt{\frac{1}{2}}^2+\sqrt{\frac{1}{3}}^2\right)\)
\(\ge\left(x+y\right)^2=5^2=25\)
Do đó \(2x^2+3y^2\ge\frac{25}{\sqrt{\frac{1}{2}}^2+\sqrt{\frac{1}{3}}^2}=30\)
\(A=\frac{1}{x^2-6x+17}=\frac{1}{\left(x^2-6x+9\right)+8}=\frac{1}{\left(x-3\right)^2+8}\le\frac{1}{8}\)
Có x^2-6x+17 = (x^2-6x+9)+8 = (x-3)^2 + 8 >= 8
=> A =1/x^2-6x+17 <= 1/8
Dấu"=" xảy ra <=> x-3 = 0 <=> x=3
Vậy Max A = 1/8 <=> x=3