chung minh rang
a) ab+ba chia het cho 11
b)neu ab+cd chia het cho 11thi abcd chia het cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Theo bài ra, ta có:
ab = 2cd (1)
abcd = ab.100 + cd.1 (2)
Thay (1) vào (2), ta có
abcd = cd.2.100 + cd.1
= cd.200 + cd.1
= cd.(200 + 1)
= cd.201
Vì 201 chia hết cho 67 nên cd.201 chia hết cho 67 hay abcd chia hết cho 67 (đpcm)
b, Vì ab + cd + eg chia hết cho 11 nên ab, cd, eg chia hết cho 11. (1)
Theo bài ra, ta có:
abcdeg = ab.10000 + cd.100 + eg.1
Từ (1), ta có ab.10000 + cd.100 + eg.1 chia hết cho 11 hay abcdeg chia hết cho 11(đpcm)
c,Tương tự như phần b bạn nhé
Nếu đúng thì bạn tick cho mình nha
1.
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
2.
abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7
ta co : abc + deg chia hết cho 37
<=> abc . 1000 + deg chia hết cho 37
abc000 + deg chia hết cho 37
<=> abcdeg chia hết cho 37
tớ chỉ biết làm câu a thôi , bạn nguyễn thị liệu làm đúng rùi đó
ta co : abc + deg chia hết cho 37
<=> abc . 1000 + deg chia hết cho 37
abc000 + deg chia hết cho 37
<=> abcdeg chia hết cho 37
tớ chỉ biết làm câu a thôi , bạn nguyễn thị liệu làm đúng rùi đó
Ta có:
\(\overline{abcd}\text{⋮}99\)
\(\Rightarrow\left(100\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(99\overline{ab}+\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left[99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\right]\text{⋮}99\)
Vì \(99\overline{ab}\text{⋮}99\) và \(\left[99\overline{ab}+\left(\overline{ab}+\overline{cd}\right)\right]\text{⋮}99\)
nên \(\left(\overline{ab}+\overline{cd}\right)\text{⋮}99\) (đpcm)
Điều ngược lại:
\(\left(\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(99\overline{ab}+\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\left(100\overline{ab}+\overline{cd}\right)\text{⋮}99\)
\(\Rightarrow\overline{abcd}\text{⋮}99\) (đpcm)
Câu hỏi của Nguyễn Khánh Tâm - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Linhtsuki - Toán lớp 6 - Học toán với OnlineMath
Em xem bài làm tại link này nhé!
a-2:3 => a-2+3:3 =>a+1:3
a-4:4 => a-4+5:5 => a+1:5
a-6:7 => a-6+7:7 => a+1:7
Vậy a+1 là bọi của 3,5,7
a nhỏ nhất nên a+1 nhỏ nhất
a+1 là BCNN(3;5;7)=105
a=104
2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4
Ta có cd chia hết cho 4 nên abcd chia hết cho 4
Câu b tương tự
a) ab + ba = 10a + b + 10b + a = (10a + a) + (10b + b) = 11a + 11b = 11(a + b) chia hết cho 11
=> ab + ba chia hết cho 11.
b) abcd = 100 . ab + cd = (99 + 1) . ab + cd = 99 . ab + ab + cd
Vì 99 . ab chia hết cho 11 ; ab + cd chia hết cho 11.
=> abcd chia hết cho 11.
a) Ta có :
ab + ba = 10b+10a+a+b = (10b+b)+(10a+a) = 11b+11a = 11(a+b)
=> 11(a+b) chia hết cho 11
b) ab+cd chia hết cho 11 => ab+cd = ab+ba
=> abba = abcd <=> đpcm