K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2024

`12x + 6/7 : 2 = 9x + 8`

`=> 12x + 3/7 - 9x  =  8`

`=> 3x   =  8 -  3/7`

`=> 3x = 53/7`

`=> x = 53/7 : 3`

`=> x = 53/7 . 1/3`

`=> x=  53/21`

Vậy ..

 

11 tháng 8 2024

\(12x+\dfrac{6}{7}\times\dfrac{1}{2}=9x+8\)

\(12x+\dfrac{3}{7}=9x+8\)

\(12x=9x+8-\dfrac{3}{7}\)

\(12x=9x+\dfrac{53}{7}\)

\(\Rightarrow\) \(\dfrac{53}{7}=3x\)

\(\Rightarrow\dfrac{53}{7}\div3=x\)

\(\Rightarrow\dfrac{53}{21}=x\)

Vậy \(x=\dfrac{53}{21}\)

`a, <=> 5/3 . 3sqrt(x^2+2) + 3/2.2sqrt(x^2+2)-7sqrt6=sqrt(x^2+2)`

`= (5+3-1)sqrt(x^2+2)=7sqrt6`

`<=> 7sqrt(x^2+2)=7sqrt6`.

`<=> x^2+2=36`.

`<=> x^2=34`.

`<=> x=+-sqrt(34)`.

Vậy...

`b, sqrt(4x^2-12x+9)-6=0`

`<=> |2x-3|=6`.

`@ x >=3/2 <=> 2x-3=6.`

`<=> x=9/2 (tm)`.

`@x <3/2 <=> 3-2x=6`

`<=> 2x=-3`

`<=> x=-3/2.`

Vậy...

17 tháng 9 2021

d. \(\sqrt{9x^2+12x+4}=4\)

<=> \(\sqrt{\left(3x+2\right)^2}=4\)

<=> \(|3x+2|=4\)

<=> \(\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

c: Ta có: \(\dfrac{5\sqrt{x}-2}{8\sqrt{x}+2.5}=\dfrac{2}{7}\)

\(\Leftrightarrow35\sqrt{x}-14=16\sqrt{x}+5\)

\(\Leftrightarrow x=1\)

27 tháng 10 2021

b: \(\Leftrightarrow\left|2x-3\right|=7\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

27 tháng 10 2021

\(a,ĐK:x\ge0\\ PT\Leftrightarrow4\sqrt{x}-2\sqrt{x}+3\sqrt{x}=12\\ \Leftrightarrow5\sqrt{x}=12\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\\ \Leftrightarrow x=\dfrac{144}{25}\left(tm\right)\\ b,PT\Leftrightarrow\sqrt{\left(2x-3\right)^2}=7\Leftrightarrow\left|2x-3\right|=7\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=7\\3-2x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

a) Ta có: \(x^3-9x^2+19x-11=0\)

\(\Leftrightarrow x^3-x^2-8x^2+8x+11x-11=0\)

\(\Leftrightarrow x^2\left(x-1\right)-8x\left(x-1\right)+11\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-8x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2-8x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{5}+4\\x=-\sqrt{5}+4\end{matrix}\right.\)

Vậy: \(S=\left\{1;\sqrt{5}+4;-\sqrt{5}+4\right\}\)

9 tháng 5 2021

\(\dfrac{x}{2x-6}-\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\left(ĐKXĐ:x\ne-1,x\ne3\right)\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}-\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{2x\cdot2}{2\left(x+1\right)\left(x-3\right)}\)

\(\Rightarrow x\left(x+1\right)-x\left(x-3\right)=4x\)

\(\Leftrightarrow x^2+x-x^2+3x=4x\)

\(\Leftrightarrow x^2+x-x^2+3x-4x=0\)

\(\Leftrightarrow0x=0\)

Phương trình có vô số nghiệm , trừ x = -1,x = 3

Vậy ...

\(\dfrac{12x+1}{12}< \dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)

\(\Leftrightarrow12\cdot\dfrac{12x+1}{12}< 12\cdot\dfrac{9x+1}{3}-12\cdot\dfrac{8x+1}{4}\)

\(\Leftrightarrow12x+1< 4\left(9x+1\right)-3\left(8x+1\right)\)

\(\Leftrightarrow12x+1< 36x+4-24x-3\)

\(\Leftrightarrow12x+1< 12x+1\)

\(\Leftrightarrow12x-12x< 1-1\)

\(\Leftrightarrow0x< 0\)

Vậy S = {x | x \(\in R\)}

 

18 tháng 12 2020

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

18 tháng 12 2020

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

24 tháng 2 2019

\(9x^3-6x^2+12x=8\)

\(\Leftrightarrow9x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(3x-2\right)^3=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

15 tháng 10 2021

\(PT\Leftrightarrow\left|3x-2\right|=8\Leftrightarrow\left[{}\begin{matrix}3x-2=8\\2-3x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-2\end{matrix}\right.\)

15 tháng 10 2021

\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=8\)

\(\Leftrightarrow\left|3x-2\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=8\\3x-2=-8\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-2\end{matrix}\right.\)