K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

Giả sử \(a\left(2-b\right)>1,b\left(2-c\right)>1,c\left(2-a\right)>1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)>1\) (1)

Mặt khác, ta có: 

\(a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)

Tương tự, \(b\left(2-b\right)\le1,c\left(2-c\right)\le1\)

\(\Rightarrow abc\left(2-a\right)\left(2-b\right)\left(2-c\right)\le1\),điều này trái với (1)

Vậy điều giả sử là sai.

Do đó ít nhất 1 trong 3 bất đẳng thức trên là sai.

26 tháng 4 2017

cần gì bạn dùng tích chất đường trung binh  

26 tháng 4 2017

Nhưng bắt buộc là phản chứng mà

10 tháng 4 2018

a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2.

Điều này mâu thuẫn với giả thiết a + b < 2. Vậy một trong hai số a và b phải nhỏ hơn 1.

b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ. Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.

11 tháng 4 2018

a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2. Điều này mâu thuẫn với giả thiết a + b < 2.

Vậy một trong hai số a và b phải nhỏ hơn 1.

b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ.

Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.

23 tháng 9 2016

Giả sử tồn tại hai số a,b sao cho \(a^3+b^3=2\) và \(a+b>2\)

Khi đó, đặt \(a=x+y\) , \(b=x-y\) 

Ta có \(a+b=x+y+x-y=2x>2\Rightarrow x>1\)

\(a^3+b^3=\left(x+y\right)^3+\left(x-y\right)^3=2x^3+6xy^2\)

Do x > 1 nên \(2x^3>2;6xy^2\ge0\). Suy ra \(a^3+b^3>2\) , trái với giả thiết đề bài.

Vậy ta có đpcm

28 tháng 9 2016

Giả sử a+b>2

=>\(a^3+b^3+3ab\left(a+b\right)>\left(a+b\right)^3=2^3=8\)

=>\(2+3ab\left(a+b\right)>8\)

=>\(3ab\left(a+b\right)>6\)

=>\(ab\left(a+b\right)>2\)

=>\(ab\left(a+b\right)>a^3+b^3\)

=>\(0>a^3+b^3-ab\left(a+b\right)\)

=>\(0>\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\)

=>\(0>\left(a+b\right)\left(a^2-2ab+b^2\right)\)

=>\(0>\left(a+b\right)\left(a-b\right)^2\) 

Vì a+b>2 (điều đã giả sử) và (a-b)2\(\ge0\) <=>\(\left(a+b\right)\left(a-b\right)^2\ge0\)

=>\(0>\left(a+b\right)\left(a-b\right)^2\) là vô lý 

=>\(a+b\le2\)

Ta có đpcm
30 tháng 9 2016

Who?

Toán lớp 8