Chứng minh rằng:
Nếu \(\dfrac{a^2+b^2}{c^2+d^2}\) = \(\dfrac{ab}{cd}\) thì \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(\dfrac{a}{c}=\dfrac{b}{d}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)
Áp dụng tính chất dãy tỉ số ...... :
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Leftrightarrow\dfrac{a}{c}.\dfrac{b}{d}=\dfrac{a^2+b^2}{c^2+d^2}\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\Rightarrow\left(\dfrac{a}{c}^2\right)=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}\)
\(\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\left(đpcm\right)\)
Cho \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\) với ( với a, b, c, d khác 0, và c \(\ne\pm d\) ). Chứng minh rằng hoặc \(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc \(\dfrac{a}{b}=\dfrac{d}{c}\) ?
ta có \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow ab.\left(c^2+d^2\right)=cd.\left(a^2+b^2\right)\)
suy ra \(ab.\left(c^2+d^2\right)\)=\(abc^2+abd^2=acbc+adbd\) (1)
\(cd\left(a^2+b^2\right)=a^2cd+b^2cd+bcbd\) =acad+bcbd (2)
(1);(2) suy ra acbc+adbd=acad+bcbd
nên bc+ad=bc+ad
suy ra ad=bc nên \(\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có :\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)
\(\Leftrightarrow cd\left(a^2+b^2\right)=ab\left(c^2+d^2\right)\)
\(\Leftrightarrow a^2cd+b^2cd=c^2ab+d^2ab\)
\(\Leftrightarrow\left(a^2cd+b^2cd\right)-\left(c^2ab+d^2ab\right)=0\)
\(\Leftrightarrow aacd+bbcd-ccab-ddab=0\)(tất cả là dấu nhân ko phải số tự nhiên có 4 chữ số nha)
\(\Leftrightarrow ac\left(ad-bc\right)-bd\left(ad-bc\right)=0\)
\(\Leftrightarrow\left(ad-bc\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}ad-bc=0\\ac-bd=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}ad=bc\\ac=bd\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{d}{c}\\\dfrac{a}{b}=\dfrac{c}{d}\end{matrix}\right.\left(\text{đ}pcm\right)\)
bn ơi cho mk hỏi ac vói bd rút gọn kiểu gì mà nó mất đc
Biết \(\dfrac{a^2 + b^2}{c^2 + d^2}=\dfrac{ab}{cd}\) với a,b,c,d khác 0. Chứng minh rằng:
\(\dfrac{a}{b}=\dfrac{c}{d}\) hoặc\(\dfrac{a}{b}=\dfrac{d}{c}\) cái \(\dfrac{a}{b}=\dfrac{c}{d}\)thì mình chứng minh được rồi còn cái\(\dfrac{a}{b}=\dfrac{d}{c}\)thì chưa mong các bạn giúp ạ
Áp dụng BĐT BSC:
\(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(=\dfrac{b\left(a+b\right)-b^2}{a+b}+\dfrac{c\left(b+c\right)-c^2}{b+c}+\dfrac{a\left(c+a\right)-a^2}{c+a}\)
\(=a+b+c-\left(\dfrac{a^2}{c+a}+\dfrac{b^2}{a+b}+\dfrac{c^2}{c+a}\right)\)
\(\ge a+b+c-\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)
Đẳng thức xảy ra khi \(a=b=c\)
4ab ≤ (a + b)2 ⇒ \(\dfrac{4ab}{a+b}\le a+b\)
Tương tự \(\dfrac{4ac}{a+c}\le a+c\) ; \(\dfrac{4bc}{b+c}\le b+c\)
⇒ Cộng lại vế với vế :
4VT ≤ 2 (a+b+c) ⇒ VT ≤ \(\dfrac{a+b+c}{2}\)
Ta đặt : a/b = c/d = K ( K khác 0 )
=> a = b.K
c = d.K
Mà : a2 + b2 / c2 + d2 = b.K2 + b2 / d.K2 + d2
= b2 . ( K2 + 1 ) / d2 . ( K2 + 1 )
= b2 / d2 ( 1 )
Mà : ab/cd = b.K.b / d.K.d = b2 . K / d2 . K
= b2 / d2 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : a/b =c/d ( ĐPCM )