K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2024

Xét `ΔABC` có: `AB + AC > BC`

`=> R_((B)) + R((C)) > BC`

`=> (B)` cắt `(C)` (đpcm)

a: Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

Do đó: ΔABD=ΔACD

nên DB=DC

b: BE⊥AC

DC⊥AC
Do đó: BE//DC

c: \(\widehat{EBC}=\widehat{DCB}\)

mà \(\widehat{DCB}=\widehat{DBC}\)

nên \(\widehat{EBC}=\widehat{DBC}\)

hay BC là tia phân giác của góc EBD

d: Ta có: AB=AC

nên A nằm trên đường trung trực của BC(1)

Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AD vuông góc BC

a: Xet ΔCEA vuông tại E và ΔCFB vuông tại F có

góc ACE=góc BCF

=>ΔCEA đồng dạng với ΔCFB

=>CE/CF=CA/CB

=>CE*CF=CA*CB

b: CA/CB=IA/IB

Xét ΔIAE vuông tại E và ΔIBF vuông tại F có

góc AIE=góc BIF

=>ΔIAE đồg dạng với ΔIBF

=>IA/IB=IE/IF=CA/CB=CE/CF

c: Xét ΔCAB vuông tại A có AD là đường cao

nên CA^2=CD*CB

19 tháng 12 2021

a: Xét (O) có

DA là tiếp tuyến

DB là tiếp tuyến

Do đó: OD là tia phân giác của góc AOB(1)

Xét (O) có

EA là tiếp tuyến

EC là tiếp tuyến

Do đó: OE là tia phân giác của góc AOC(2)

Từ (1) và (2) suy ra OD⊥OE

10 tháng 12 2023

a: Xét tứ giác AHIK có

\(\widehat{AHI}+\widehat{AKI}=90^0+90^0=180^0\)

=>AHIK là tứ giác nội tiếp

=>A,H,I,K cùng thuộc một đường tròn

b: Xét (O) có

ΔACD nội tiếp

AD là đường kính

Do đó ΔACD vuông tại C

=>AC\(\perp\)CD

Ta có: BH\(\perp\)AC

AC\(\perp\)CD

Do đó:BH//CD

c: Ta có: BH//CD

I\(\in\)BH

Do đó: BI//CD

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó; ΔABD vuông tại B

Ta có:BD\(\perp\)BA

CI\(\perp\)BA

Do đó:BD//CI

Xét tứ giác BICD có

BI//CD

BD//CI

Do đó: BICD là hình bình hành

a: Xét tứ giác MCOD có \(\widehat{MCO}+\widehat{MDO}=180^0\)

nên MCOD là tứ giác nội tiếp

b: Xét ΔMCA và ΔMBC có 

\(\widehat{MCA}=\widehat{MBC}\)

\(\widehat{AMC}\) chung

Do đó; ΔMCA\(\sim\)ΔMBC

a: góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

b: BFEC nội tiếp

=>góc BFE+góc BCE=180 độ

=>góc AFE=góc ACB

c: Kẻ tiếp tuyến Ax của (O)

=>góc xAC=góc ABC=góc AEF

=>Ax//FE

=>FE vuông góc AO

b) Xét tứ giác BEDC có 

\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)

nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)