cho tam giác ABC.chứng minh rằng hai đường (B;BA) và (C;CA) cắt nhau.Gọi A' là giao điểm khác A của hai đường tròn .
Gấpppppp a kíu toiiiiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
nên DB=DC
b: BE⊥AC
DC⊥AC
Do đó: BE//DC
c: \(\widehat{EBC}=\widehat{DCB}\)
mà \(\widehat{DCB}=\widehat{DBC}\)
nên \(\widehat{EBC}=\widehat{DBC}\)
hay BC là tia phân giác của góc EBD
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
nên D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD vuông góc BC
a: Xet ΔCEA vuông tại E và ΔCFB vuông tại F có
góc ACE=góc BCF
=>ΔCEA đồng dạng với ΔCFB
=>CE/CF=CA/CB
=>CE*CF=CA*CB
b: CA/CB=IA/IB
Xét ΔIAE vuông tại E và ΔIBF vuông tại F có
góc AIE=góc BIF
=>ΔIAE đồg dạng với ΔIBF
=>IA/IB=IE/IF=CA/CB=CE/CF
c: Xét ΔCAB vuông tại A có AD là đường cao
nên CA^2=CD*CB
a: Xét (O) có
DA là tiếp tuyến
DB là tiếp tuyến
Do đó: OD là tia phân giác của góc AOB(1)
Xét (O) có
EA là tiếp tuyến
EC là tiếp tuyến
Do đó: OE là tia phân giác của góc AOC(2)
Từ (1) và (2) suy ra OD⊥OE
a: Xét tứ giác AHIK có
\(\widehat{AHI}+\widehat{AKI}=90^0+90^0=180^0\)
=>AHIK là tứ giác nội tiếp
=>A,H,I,K cùng thuộc một đường tròn
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đó ΔACD vuông tại C
=>AC\(\perp\)CD
Ta có: BH\(\perp\)AC
AC\(\perp\)CD
Do đó:BH//CD
c: Ta có: BH//CD
I\(\in\)BH
Do đó: BI//CD
Xét (O) có
ΔABD nội tiếp
AD là đường kính
Do đó; ΔABD vuông tại B
Ta có:BD\(\perp\)BA
CI\(\perp\)BA
Do đó:BD//CI
Xét tứ giác BICD có
BI//CD
BD//CI
Do đó: BICD là hình bình hành
a: Xét tứ giác MCOD có \(\widehat{MCO}+\widehat{MDO}=180^0\)
nên MCOD là tứ giác nội tiếp
b: Xét ΔMCA và ΔMBC có
\(\widehat{MCA}=\widehat{MBC}\)
\(\widehat{AMC}\) chung
Do đó; ΔMCA\(\sim\)ΔMBC
a: góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: BFEC nội tiếp
=>góc BFE+góc BCE=180 độ
=>góc AFE=góc ACB
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc AO
b) Xét tứ giác BEDC có
\(\widehat{BDC}=\widehat{BEC}\left(=90^0\right)\)
nên BEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Xét `ΔABC` có: `AB + AC > BC`
`=> R_((B)) + R((C)) > BC`
`=> (B)` cắt `(C)` (đpcm)