K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{ABC}+\widehat{ACB}+60^0=180^0\)

=>\(2\left(\widehat{OBC}+\widehat{OCB}\right)=180^0-60^0=120^0\)

=>\(\widehat{OBC}+\widehat{OCB}=60^0\)

Xét ΔBOC có \(\widehat{BOC}+\widehat{OBC}+\widehat{OCB}=180^0\)

=>\(\widehat{BOC}=180^0-60^0=120^0\)

Gọi OH là phân giác của góc BOC

=>\(\widehat{BOH}=\widehat{COH}=\dfrac{\widehat{BOC}}{2}=60^0\)

Ta có: \(\widehat{EOB}+\widehat{BOC}=180^0\)(hai góc kề bù)

=>\(\widehat{EOB}+120^0=180^0\)

=>\(\widehat{EOB}=60^0\)

=>\(\widehat{DOC}=60^0\)

Xét ΔEOB và ΔHOB có

\(\widehat{EOB}=\widehat{HOB}\left(=60^0\right)\)

OB chung

\(\widehat{EBO}=\widehat{HBO}\)

Do đó: ΔEOB=ΔHOB

=>OH=OE

Xét ΔOHC và ΔODC có

\(\widehat{OCH}=\widehat{OCD}\)

CO chung

\(\widehat{COH}=\widehat{COD}\left(=60^0\right)\)

Do đó: ΔOHC=ΔODC
=>OH=OD

=>OE=OD

=>ΔODE cân tại O

b: ΔOHB=ΔOEB

=>BH=BE

ΔOHC=ΔODC
=>HC=DC

BC=BH+CH

mà BH=BE và CH=CD

nên BC=BE+DC

29 tháng 7 2015

Lấy F \(\in\) BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120=> góc BOF = góc COF = 60o 
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120=> góc DOC = góc EOB = 60o
Từ đó có 

  • Tam giác BEO = Tam giác BFO (g.c.g)
  • ​Tam giác CDO = Tam giác CFO (g.c.g)
  • => OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
  • => BE = BF và CD = CF 

 Mà BF+CF=BC => BE + CD = BC

Nếu có gì chưa hiểu thì bạn nhắn lại cho minh , cho mình tick đúng nha

9 tháng 12 2017

Lấy F ∈ BC sao cho OD là phân giác góc BOC
Dễ dàng tính được góc BOC=120
o => góc BOF = góc COF = 60
o
Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120
o => góc DOC = góc EOB = 60
o
Từ đó có
Tam giác BEO = Tam giác BFO (g.c.g)
Tam giác CDO = Tam giác CFO (g.c.g)
=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O
=> BE = BF và CD = CF
Mà BF+CF=BC => BE + CD = BC

20 tháng 2 2018

toán lớp 7 sạo ?!!!

21 tháng 2 2018

cua anh tao

15 tháng 2 2016

ko the duoc

 

23 tháng 2 2019

Lấy F thuộc  BC sao cho OD là phân giác góc BOC

Dễ dàng tính được góc BOC=120 độ

=> góc BOF = góc COF = 60 do

Góc BOC = góc EOD ( đối đỉnh ) => góc EOD = 120 do 

=> góc DOC = góc EOB = 60 do

Từ đó có 

Tam giác BEO = Tam giác BFO (g.c.g)

​Tam giác CDO = Tam giác CFO (g.c.g)

=> OE = OF và OD = OF => OE = OD => Tam giác EOD cân tại O

=> BE = BF và CD = CF 

 Mà BF+CF=BC => BE + CD = BC