K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017

a) Ta có \(2^{4n}=\left(2^4\right)^n=16^n=...6\)

  => \(2^{2043}=2^{2040}.2^3=2^{4.510}.2^3=...6\times8=...8\)

b) Ta có: \(9^n\) có tận cùng là 9 nếu n lẻ và tận cùng la 1 nếu n chắn.

Mà \(9^9\) là số lẻ nên \(9^{9^9}\) sẽ tận cùng là 9.

31 tháng 10 2017

đây là câu trả lời của mk nếu đúng thì tk mình nha

5 tháng 6 2017

Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.

=>a)=...5

b)=...0.

c=...6

d=...1.

e)9^18=(9^2)^9=81^9=...1

23 tháng 1 2018

a,9^9^9^9 so tan cung la: 1

b,14^14^14so tan cung la:6

11 tháng 11 2017

tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
         B = 3 – 32 + 33 – …   – 3100
Bài giải:
                 A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
             tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy     A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … –  3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy     B = ( 3- 3101) : 4

3 tháng 8 2022

sai

5 tháng 12 2021

a) Ta có: \(3^{555}=3^{552}.3^3\)

Ta lại có: \(3^{552}=3^4.3^4.....3^4=81.81.....81\) (138 thừa số)

\(\Rightarrow3^{552}=\overline{...1}\)

Ta lại có nữa: \(3^3=\overline{...7}\)

Vậy \(3^{555}=\overline{...1}.\overline{...7}=\overline{...7}\)

b) Ta có: \(\left(2^7\right)^9=2^{63}=2^{60}.2^3\)

Ta lại có: \(2^{60}=2^4.2^4.....2^4=16.16.....16\) (15 thừa số)

\(\Rightarrow2^{60}=\overline{...6}\)

Ta lại có nữa \(2^3=8\)

Vậy \(\left(2^7\right)^9=\overline{...6}.8=\overline{...8}\)

 

 

5 tháng 12 2021

.

 

10 tháng 10 2017

tan cung la 9 nhe

10 tháng 10 2017

2 chữ sô tận cùng,trình bày rõ ra

1 tháng 6 2015

ta có \(19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=2476611\)

25 tháng 3 2015

P = 14^14^14 + 9^9^9 + 2^3^4 

Theo toán học ta tính từ trên xuống dưới. vd: 2^2^2=2^4=16.

=> P=14^(...6)+9^(...9)+2^(3^2)^2

P=(...6)+(...9)+2^9^2

P=(...5)+2^(...1)

P=(...5)+(...2)

P=(...7)

=> Tận cùng P =7

P = 14^14^14 + 9^9^9 + 2^3^4 
Theo toán học ta tính từ trên xuống dưới. vd: 2^2^2=2^4=16.
=> P=14^(...6)+9^(...9)+2^(3^2)^2
P=(...6)+(...9)+2^9^2
P=(...5)+2^(...1)
P=(...5)+(...2)
P=(...7)
=> Tận cùng P =7

k mik nha!