Trên đường tròn \(O\)bán kính \(R=3,14\)cho 2 điểm \(A\)và \(B\)sao cho số đo cung nhỏ \(AB\)là \(120^0\).Một điểm \(M\)thay đổi trên cung \(AB\)nhỏ.Tìm giá trị lớn nhất của chu vi \(\Delta MAB\).(đơn vị cm,lấy 4 chữ số thập phân)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{AOB}=60^0\)
=>Số đo cung nhỏ AB là 600
Số đo cung lớn AB là 360-60=3000
b: ΔOAB đều
mà OI là đường trung tuyến
nên \(OI=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{R\sqrt{3}}{2}\)
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI là đường trung trực của AB(2)
Từ (1),(2) suy ra O,I,M thẳng hàng
hình( tự vẽ)
a) Chú ý: \(\widehat{AEB}=\widehat{AFB}=90\)(góc chắn nửa đường tròn) => H là trực tâm tam giác ABC
=> tứ giác AIFC nội tiếp (do \(\widehat{AIC}=\widehat{AFC}=90\)) => góc CIF= góc CAF
mà góc CAF=\(\frac{1}{2}\)góc EOF
mà EF=R => tam giác OEF đều => EOF =60 => CIF=30
b)
tam giác vuông AIC đồng dạng với tam giác vuông AEB (g-g)
=> AE.AC=AI.AB
Tương tự tam giác BIC đồng dạng BFA
=> BF.BC=BI.AB
Vậy: AE.AC+BF.BC=AB(AI+IB)=AB\(^2\)=4R\(^2\)=const (ĐPCM)
a: Kẻ BD vuông góc AC,CE vuông góc AB
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
=>góc AED=góc ACB
=>ΔAED đồng dạng vơi ΔACB
Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC
Gọi H là giao của BD và CE
=>AH vuông góc BC tại N
Gọi giao của OM với (O) là A'
ΔOBC cân tại O
=>OM vuông góc BC
AN<=A'M ko đổi
=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)
Dấu = xảy ra khi A trùng A'
=>A là điểm chính giữa của cung BC