Cho tam giác ABC cân tại A, M là trung điểm BC, trên tia đối MA lấy D sao cho MD=MA. Qua M kẻ ME vuông góc với AB, MF vuông góc với DC
a) Chứng minh tam giác ABM = tam giác ACM
b) Chứng minh AB song song với CD
c) Chứng minh M là trung điểm EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC cân tại A
mà AM là đường cao
nên AM là đường phân giác
c: Ta có: ΔABC đều
nên \(\widehat{ABM}=\widehat{ACM}=60^0\)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
bạn ơi chứng minh tam giác ABM=tam giác ACM rồi sao lại còn chứng minh tiếp
xét tam giác ABM và tam giác ACM ta có
AM=AM ( cạnh chung)
AB=AC( tam giác ABC cân tại A)
goc MAB = góc MAC ( AM là tia p.g góc BAC)
->tam giac ABM= tam giac ACM (c-g-c)
a: Xét ΔAMD và ΔAME có
AM chung
MD=ME
AD=AE
Do đó: ΔAMD=ΔAME
b: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
a) Xét ΔABM vuông tại B và ΔACM vuông tại M có
AM chung
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Đề thiếu rồi bạn
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
DO đó: ΔABM=ΔACM
b: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
MB=MC
Do đó: ΔAMB=ΔAMC
b: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
=>AB//DC
c: Ta có: ME\(\perp\)AB
AB//DC
Do đó: ME\(\perp\)DC
mà DC\(\perp\)MF
và ME,MF có điểm chung là M
nên E,M,F thẳng hàng
Xét ΔMEB vuông tại E và ΔMFC vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)(AB//CD)
Do đó: ΔMEB=ΔMFC
=>ME=MF
mà E,M,F thẳng hàng
nên M là trung điểm của EF