Phân tích đa thức x^8+7x^4+1 thành nhân tử bằng phương pháp hệ số bất định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt H \(=x^4-5x^3+7x^2-6\)
Gỉa sử : \(H=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^{3\:}+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
\(\Leftrightarrow\hept{\begin{cases}a+c=-5\\ac+b+d=7\\ad+bc=0\end{cases}}\)
\(\left\{bd=6\right\}\)
\(\Leftrightarrow\hept{\begin{cases}a=-3\\b=3\\c=-2\end{cases}}\)
\(\left\{d=-2\right\}\)
\(\Rightarrow H=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)
Chúc bạn học tốt !!!
2x4 - 3x3 - 7x2 +6x+8
= 2x4 - 4x3 + x3 - 2x2 - 5x2 +10x - 4x +8
= 2x3.(x-2) +x2.(x-2) - 5x.(x-2) - 4.(x-2)
= (x-2).(2x3 +x2 - 5x -4)
= (x-2).(2x3 + 2x2 - x2 - x - 4x-4)
= (x-2).(x+2).(2x2 -x -4)
....
Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)
Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)
Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)
Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)
Giả sử:
\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)
Ta có:
\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)
\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)
Đặt \(x^4-2x^3-x^2-2x+1=\left(x^2+ax+1\right)\left(x^2+bx+1\right)=x^4+bx^3+x^2+ãx^3+abx^2+ax+x^2+bx+1\)
=> \(x^4-2x^3-x^2-2x+1=x^4+\left(a+b\right)x^3+\left(ab+2\right)x^2+\left(a+b\right)x+1\)
=> \(\hept{\begin{cases}a+b=-2\\ab+2=-1\\a+b=-2\end{cases}}\Rightarrow a=-3;b=1\)
\(x^4-2x^3-x^2-2x+1\)
\(=\left(x^4+x^3+x^2\right)-3x^3-3x^2-3x+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)-3x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-3x+1\right)\)
Chúc bạn học tốt.
ak
x8 + -7x4 + -8 = 0 Reorder the terms: -8 + -7x4 + x8 = 0 Solving -8 + -7x4 + x8 = 0 Solving for variable 'x'. Factor a trinomial. (-1 + -1x4)(8 + -1x4) = 0
bn nói j vậy bạn