Chứng minh rằng: 2x+3 chia hết cho 3x+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì 2 chia hết cho 2 nên 2x chia hết cho 2, 6 chia hết cho 2 nên 6y chia hết cho 2. 2 số chia hết cho 2 có tổng chia hết cho 2 nên x và y nhân với 2 và 6 thì luôn chia hết cho 2
b)Vì 3 chia hết cho 3 nên 3x chia hết cho 3, 12 chia hết cho 3 nên 12y chia hết cho 3. 2 số chia hết cho 3 có tổng chia hết cho 3 nên x và y nhân với 3 và 12 thì luôn chia hết cho 3
c)Vì 5 chia hết cho 5 nên 5x chia hết cho 5, 10 chia hết cho 5 nên 10y chia hết cho 5. 2 số chia hết cho 5 có tổng chia hết cho 5 nên x và y nhân với 5 và 10 thì luôn chia hết cho 5
d) Vì 9 chia hết cho 9 nên 9x chia hết cho 9, 27 chia hết cho 9 nên 27y chia hết cho 9. 2 số chia hết cho 9 có tổng chia hết cho 9 nên x và y nhân với 9 và 27 thì luôn chia hết cho 9
a)
\(x^2+x+1\)
\(=x\left(x+1\right)+1\)
Vì \(x\left(x+1\right)\) là tích của 2 số nguyên liến tiếp nên tích của chúng là số chẵn
\(\Rightarrow x\left(x+1\right)+1\) là số lẻ
\(\left(x^2+x+1\right)\) không chia hết cho 2
b,
Ta có :
\(3\left(x^2+2x\right)⋮3\forall x\)
1 không chia hết cho 3
\(\Rightarrow\left[3\left(x^2+2x\right)+1\right]\) không chia hết cho 3
c,
\(\left(3x^2+6x+1\right)\)
\(=3\left(x^2+2x\right)+1\)
Ta có :
\(3\left(x^2+2x\right)⋮3\forall x\)
1 không chia hết cho 3
Vậy \(\left(3x^2+6x+1\right)\) không chia hết cho 3