phan tich da thuc sau thanh nhan tu
a (x^2 +5x+6)(x^2-15x+56)-144
b (X^2-11x+28)(x^2-7x+10)-72
giai ho to vs ,to dang can gap
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x2 + 8x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ’ = 42 – 2.3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
* Chứng minh:
Phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a.x2 + bx + c (đpcm).
* Áp dụng:
a) 2x2 – 5x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt:
Phương trình 5 x 2 + 21x − 36 = 0 có a + b + c = 5 +21 – 26 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = 1 ; x 2 = - 26 5 . Khi đó B = 5. (x − 1) x + 26 5
Đáp án: C
Phương trình 18 x 2 + 23x + 5 = 0 có a – b + c = 18 – 23 + 5 = 0 nên phương trình có hai nghiệm phân biệt là x 1 = − 1 ; x 2 = − 5 18 . Khi đó A = 18 (x + 1) x + 5 18
Đáp án: A
Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
ak
x8 + -7x4 + -8 = 0 Reorder the terms: -8 + -7x4 + x8 = 0 Solving -8 + -7x4 + x8 = 0 Solving for variable 'x'. Factor a trinomial. (-1 + -1x4)(8 + -1x4) = 0
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
\(a.\left(x^2+5x+6\right)\left(x^2-15x+56\right)-144\\ =\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)-144\\ =\left[\left(x+2\right)\left(x-7\right)\right]\left[\left(x+3\right)\left(x-8\right)\right]-144\\ =\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144\\ =\left(x^2-5x-19+5\right)\left(x^2-5x-19-5\right)-144\\ =\left(x^2-5x-19\right)^2-5^2-144\\ =\left(x^2-5x-19\right)^2-169\\ =\left(x^2-5x+19\right)^2-13^2\\ =\left(x^2-5x-19-13\right)\left(x^2-5x-19+13\right)\\ =\left(x^2-5x-32\right)\left(x^2-5x-6\right)\\ =\left(x^2-5x-32\right)\left(x+1\right)\left(x-6\right)\)
\(b.\left(x^2-11x+28\right)\left(x^2-7x+10\right)-72\\ =\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-2\right)-72\\ =\left[\left(x-4\right)\left(x-5\right)\right]\left[\left(x-7\right)\left(x-2\right)\right]-72\\ =\left(x^2-9x+20\right)\left(x^2-9x+14\right)-72\\ =\left(x^2-9x+17+3\right)\left(x^2-9x+17-3\right)-72\\ =\left(x^2-9x+17\right)^2-3^2-72\\ =\left(x^2-9x+17\right)^2-81\\ =\left(x^2-9x+17\right)^2-9^2\\ =\left(x^2-9x+17-9\right)\left(x^2-9x+17+9\right)\\ =\left(x^2-9x+8\right)\left(x^2-9x+26\right)\\ =\left(x-1\right)\left(x-8\right)\left(x^2-9x+26\right)\)