K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

có điều kiện không bạn?

27 tháng 10 2017

Mik cug k rõ:(

Hỏi hộ thoi ha!

7 tháng 9 2019

Câu hỏi của Nguyễn Ngọc Thảo Linh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo nhé! 

9 tháng 9 2017

ta có: .\(\frac{a.c}{b.d}\)\(\frac{^{a^2}}{b^2}\)\(\frac{a.c}{b.d}\)=\(\frac{c^2}{d^2}\)vậy \(\frac{a.c.b^2}{b.d}\)=  a2    (1)  và  \(\frac{a.c.d^2}{b.d}\)=   c2  (2)

(1)+(2) suy ra \(\frac{a.c}{b.d}\)=   \(\frac{a^2+c^2}{b^2+d^2}\)

10 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\),đặt \(\frac{a}{c}=\frac{b}{d}=k=>a=ck;b=dk\)

Ta có: \(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(ck\right)^2+c^2}{\left(dk\right)^2+d^2}=\frac{c^2k^2+c^2}{d^2k^2+d^2}=\frac{c^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(1\right)\)

\(\frac{a.c}{b.d}=\frac{ck.c}{dk.d}=\frac{c^2k}{d^2k}=\frac{c^2}{d^2}=\left(\frac{c}{d}\right)^2\left(2\right)\)

Từ (1) và (2) suy ra \(\frac{a^2+c^2}{b^2+d^2}=\frac{a.c}{b.d}\left(đpcm\right)\)
 

\(\frac{a}{b}=\frac{c}{d}\)

\(=>\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\)

\(=\frac{a.c}{b.d}\)

4 tháng 8 2016

Ta đặt: a/b = a/d =k

  => a = b.k, c=d.k

 Ta có: a2 + a.c/c2 - a.c=b2 + b.d/d2 - b.d

 Vế trái:  => (b.k)2 + (b.k)(d.k)/(d.k)- (b.k)(d.k)

  => b2.k2 + k(b.d)/d2.k2 - k.(b.d)

 Ta lược bỏ các chữ giống nhau, ta được:

  => b2/d2

 Vế phải: b2 +b.d/d2 - b.d

 Ta cũng lược bỏ những chữa giống nhau ta được:

  => b2/d2 

Vậy a2 +a.c/c2 + a.c = b2 + b.d/d2 - b.d

Y
23 tháng 5 2019

+ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

+ \(\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\) \(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

+ \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\Rightarrow\frac{a\cdot b}{c\cdot d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)

\(\Rightarrow\frac{a}{b}\cdot\frac{a}{b}=\frac{a^2+c^2}{b^2+d^2}\Rightarrow\frac{a\cdot c}{b\cdot d}=\frac{a^2+c^2}{b^2+d^2}\)

câu cuối lm tương tự

19 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a.c}{b.d}\left(1\right)\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)