K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

Sai thì thôi nhá! Đừng có chọn sai! : |     :v

Giải

Ta có hình vẽ:

D A B C 90 0 80 o

Ta có : Góc C > D và lớn hơn : 900 - 80o = 100

\(\Rightarrow\widehat{bAc}=10^o\)

Nhận xét: Tia phân giác chia tam giác thành hai phần bằng nhau.

\(\Rightarrow2_p=10^o:2=5^o\) ( 2p là hai phần nha)

\(\Rightarrow\widehat{aDc}=90^o-5^o=85^o\)

\(\Rightarrow\widehat{aDb}=80^o-5^o=75^o\)

27 tháng 10 2017

Ai giúp mình thì làm cách giải chi tiết nha

20 tháng 4 2017

\(\widehat{BAC}\)= 1800 - (\(\widehat{B}+\widehat{C}\)) = 1800 - ( 800 + 300)= 700

\(\widehat{A}_1\)=\(\widehat{A}_2\)=\(\dfrac{\widehat{A}}{2}\)=\(\dfrac{70^0}{2}\)= 350

\(\widehat{ADC}=\widehat{B}+\widehat{A}_1\)(Góc ngoài của tam giác)

=800 + 350)= 1150

Do đó \(\widehat{ADB}\)= 1800 - \(\widehat{ADC}\)= 1800 + 1150=650



20 tháng 4 2017

Hình vẽ: hinhvebai2hinhvebai2

Gọi A1, A2 là 2 góc được tạo ra bởi tia phân giác góc A.

Ta có:

Góc ∠BAC = 1800 – ( ∠B + ∠C)

= 1800 – ( 800 + 300) = 700

Hay ta có thể gọi ∠A = 700

Góc ∠A1 = ∠A2

= ∠A/2 = 700 /2 = 350

  • Xét tam giác ADC ta có: Góc ∠ADC = 1800 – (∠C + ∠A2)

= 1800 – (350 + 300)= 1150

  • Do đó góc ∠ADB = 1800 – ∠ADC

= 1800 – 1150

= 650

16 tháng 9 2016

Trần Nguyễn Hoài Thư

Bạn tự vẽ hình ( hình dễ lắm nhé ) 

Giải

Xét \(\Delta ABC\) có : 

\(\widehat{BAC}+\widehat{CBA}+\widehat{ACB}=180^O\)

\(\Rightarrow\widehat{BAC}=180^O-80^O-30^O\)

\(\Rightarrow\widehat{BAC}=70\)

Ta có : AD là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{70^O}{2}=35^O\)

Xét \(\Delta ABD\) có : 

\(\widehat{ABD}+\widehat{BAD}+\widehat{BDA}=180^O\)

\(\Rightarrow\widehat{ADB}=180^O-35^O-80^O=65^O\) ( Vì \(\widehat{BAD}=35^O;\widehat{ABD}=80^O\) (CMT ) 

CMTT ta có : 

\(\widehat{ADC}=180^O-30^O-35^O=115^O\) 

Vậy \(\widehat{ADC}=115^O\) và \(\widehat{ADB}=65^O\)

Chúc bạn học tốt ok

16 tháng 9 2016

A B C C 80* 30*

hình đây nhé bn!

11 tháng 1 2018

Ta có :

A+B+C=180(tính chất của một tam giác)

⇒A=180-B-C

⇒A=180-20

⇒A=160

vì tia phân giác của góc A cắt BC tại D nên A1=A2=\(\dfrac{160}{2}\)=80

\(\Leftrightarrow\)D1=80

Vì góc D1 và góc D2 là 2 góc kề bù nên D1+D2=180

mà góc D1=80

\(\Rightarrow\)D2=180-80

\(\Rightarrow\)D2=100

Vay : D1=80, D2=100

mk ko viết đc kí hiệu góc và độ mong mọi người thông cảmhihi

4 tháng 8 2017

123456

17 tháng 9 2023

a) Ta có: \(\widehat {BAD} = \widehat {CAD}\)(vì AD là phân giác của góc BAC).

Mà \(\widehat B > \widehat C\)nên \(\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\).

Tổng ba góc trong một tam giác bằng 180° nên:

\(\begin{array}{l}\widehat B + \widehat {BAD} > \widehat C + \widehat {CAD}\\ \to 180^\circ  - (\widehat B + \widehat {BAD}) < 180^\circ  - (\widehat C + \widehat {CAD})\\ \to \widehat {ADB} < \widehat {ADC}\end{array}\)

b) Xét hai tam giác ADB và tam giác ADE có:

     \(\widehat {ADB} = \widehat {ADE}\);

     AD chung;

     \(\widehat {BAD} = \widehat {EAD}\).

Vậy \(\Delta ABD = \Delta AED\) (g.c.g)

Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn.

Trong tam giác ABC có \(\widehat B > \widehat C\) nên AC > AB hay AB < AC (AB là cạnh đối diện với góc C, AC là cạnh đối diện với góc B).

7 tháng 6 2017

\(\widehat{A}\)=80o

10 tháng 2 2019

cs chơi lazi ko

10 tháng 2 2019

nhin cái ảnh quen quen

5 tháng 10 2023

a) Để chứng minh a) ta cần chứng minh rằng góc ADC bằng góc BEC.

Vì AD là đường phân giác của góc BAC, nên ta có:

∠DAB = ∠DAC (1)

Tương tự, vì BE là đường phân giác của góc ABC, nên ta có:

∠CBA = ∠CBE (2)

Từ (1) và (2), ta có:

∠DAB + ∠CBA = ∠DAC + ∠CBE

∠DAB + ∠CBA = ∠BAC + ∠ABC

∠DAB + ∠CBA = ∠ABC + ∠BAC

Do đó, góc ADC bằng góc BEC.

Tiếp theo, để chứng minh rằng góc A bằng góc B, ta sử dụng định lý phụ của đường phân giác:

∠DAB = ∠DAC

∠EBA = ∠EBC

Vì ∠ADC = ∠BEC (đã chứng minh ở trên), nên ta có:

∠DAC + ∠ADC = ∠DAB + ∠ABC

∠DAB + ∠ABC = ∠DAC + ∠ADC

Từ đây, suy ra ∠A = ∠B.

Vậy, điều phải chứng minh a) đã được chứng minh.

b) Để chứng minh b), ta cần chứng minh rằng góc ADB bằng góc BEC.

Từ ∠ADB = ∠BEC (đã chứng minh ở a)), ta có:

∠ADB + ∠BEC = ∠BEC + ∠BEC

∠ADB + ∠BEC = 2∠BEC

∠ADB = ∠BEC

Do đó, góc ADB bằng góc BEC.

Tiếp theo, ta có:

∠A + ∠B + ∠C = 180° (định lý tổng các góc trong tam giác)

∠ADB + ∠B + ∠BEC = 180°

∠BEC + ∠B + ∠BEC = 180° (vì ∠ADB = ∠BEC)

2∠BEC + ∠B = 180°

2∠BEC = 180° - ∠B

∠BEC = (180° - ∠B) / 2

∠BEC = 90° - ∠B/2

∠BEC = 90° - ∠A/2 (vì ∠A = ∠B)

∠A/2 + ∠B/2 + ∠C = 90°

∠A/2 + ∠B/2 + ∠C = 90° - ∠A/2

∠A/2 + ∠A/2 + ∠C = 90° - ∠A/2

∠A + ∠C = 90° - ∠A/2

∠A + ∠C + ∠A/2 = 90°

2∠A + ∠C = 180°

∠A + ∠C = 180° - ∠A

∠A + ∠C = ∠B

∠A + ∠B + ∠C = 180°

∠A + ∠B + ∠C = 120° + 60°

∠A + ∠B + ∠C = 180°

Do đó, ∠A + ∠B = 120°.

Vậy, điều phải chứng minh b) đã được chứng minh.