K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

định lý hàm số sin: 
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R 
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
 \(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 90o 
vậy tam giác ABC vuông tại A

18 tháng 5 2016

b/cosB+c/cosC=a/sinB.sinC (*) 

Áp dụng định lý hàm số sin: 
a/sinA = b/sinB = c/sinC = 2R 
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC) 
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 900

25 tháng 8 2016

lần đầu e thấy thầy giải luôn 

29 tháng 4 2018

C/m BĐT phụ:   \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  (*)      (x,y dương)

Ta có:   \(\left(x-y\right)^2\ge0\)       

\(\Leftrightarrow\)\(x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)   (BĐT đã đc chứng minh)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

ÁP dụng BĐT (*) ta có:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)  (1)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{p-b+p-c}=\frac{4}{2p-\left(b+c\right)}=\frac{4}{a}\)  (2)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{p-c+p-a}=\frac{4}{2p-\left(c+a\right)}=\frac{4}{b}\) (3)

Lấy (1); (2); (3) cộng theo vế ta được:

          \(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\)\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  (đpcm)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Khi đó  \(\Delta ABC\)là tam giác đều

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Theo định lý sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \to b = \frac{{a.\sin B}}{{\sin A}}\) thay vào \(S = \frac{1}{2}ab.\sin C\) ta có:

\(S = \frac{1}{2}ab.\sin C = \frac{1}{2}a.\frac{{a.\sin B}}{{\sin A}}.sin C = \frac{{{a^2}\sin B\sin C}}{{2\sin A}}\) (đpcm)

b) Ta có: \(\hat A + \hat B + \hat C = {180^0} \Rightarrow \hat A = {180^0} - {75^0} - {45^0} = {60^0}\)

\(S = \frac{{{a^2}\sin B\sin C}}{{2\sin A}} = \frac{{{{12}^2}.\sin {{75}^0}.\sin {{45}^0}}}{{2.\sin {{60}^0}}} = \frac{{144.\frac{1}{2}.\left( {\cos {{30}^0} - \cos {{120}^0}} \right)}}{{2.\frac{{\sqrt 3 }}{2}\;}} = \frac{{72.(\frac{{\sqrt 3 }}{2}-\frac{{-1 }}{2}})}{{\sqrt 3 }} = 36+12\sqrt 3 \)

8 tháng 4 2015

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB  + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)

5 tháng 6 2016

Ta có :

( b + c - a ) ( b + a - c ) = b2 - ( c - a )2 < b2

( c + a - b ) ( c + b  - a ) = c2 - ( a - b ) < c2

( a + b - c ) ( a + c - b ) = a2 - ( b - c )2 < a2

Nhân từng vế ba bất đẳng thức trên ta được

[ ( b + c - a ) ( a + c - b ) ( a + b - c ) ]2  <  [ abc ]2

Các biểu thức trong dấu ngoặc vuông đều dương nên 

( b + c - a ) ( a + c - b ) ( a + b - c ) < abc

Xảy ra đẳng thức khi và chỉ khi a = b =c