1) 2(x+2)^2 < 2x(x+2)+4
2)(x-1)^2+x^2 < (x+1)^2+(x+2)^2
3) (x^2+1)(x-6) < (x-2)^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow5\left(7x-1\right)+60x>6\left(16-x\right)\)
=>35x-5+60x>96-6x
=>95x+6x>96+5
=>101x>101
hay x>1
Vậy: S={x|x>1}
\(\dfrac{7x-1}{6}+2x>\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{5.\left(7x-1\right)}{30}+\dfrac{60x}{30}>\dfrac{6.\left(16-x\right)}{30}\\ \Leftrightarrow35x-5+60x>96-6x\\ \Leftrightarrow35x+60x+6x>96+5\\ \Leftrightarrow101x>101\\ \Leftrightarrow x>1\)
Em tự biểu diễn trục số nha!
Ta có: A là tập nghiệm của đa thức P(x)
\( \Rightarrow A = \{ x \in \mathbb{R}|P(x) = 0\} \)
Để biểu thức \(\dfrac{1}{{P(x)}}\) xác định thì \(P(x) \ne 0\) hay \(x \notin A\).
Gọi B là tập hợp các số thực x sao cho biểu thức \(\dfrac{1}{{P(x)}}\) xác định.
\( \Rightarrow B =\{ x \in \mathbb{R}|P(x) \ne 0\}= \left\{ {x \in \mathbb{R}|x \notin A} \right\} = \mathbb{R}\,{\rm{\backslash }}\,A\)
F(x)=0
=>x=-2 hoặc x=1
Để F(x) và G(x) có chung tập nghiệm thì:
-2+4a-2b+2=0 và 1+a+b+2=0
=>4a-2b=0 và a+b=-3
=>a=-1 và b=-2
Thay x =2 ta có đa thức:
\(4-2a+6=0\Rightarrow10-2a=0\Rightarrow a=5\)
Thay a=5 ta có:
\(x^2-5x+6=0\Rightarrow x^2-2x-3x+6=0\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
Vậy nghiệm còn lại cần tìm là x=3 hoặc x=2
\(x=2\)nghiệm của \(x^2-ax+6\)
\(2^2-a.2+6=0\)
\(a.2+6=4\)
\(a.2=10\)
\(\Rightarrow a=5\)
\(x^2-5x+6=0\)
\(\Leftrightarrow x=2;x=3\)
Nghiệm còn lại là 3
hc tốt ( ko chắc nhé !!!)
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Vì x = -1 là nghiệm của H(x) nên
H(-1) = 0 ⇒ 2a(-1)2 + b(-1) = 2a - b = 0 ⇒ b = 2a
Vì H(1) = 4 ⇒ 2a.12 + b.1 = 2a + b = 4 ⇒ b = 4 - 2a
Ta có 2a = 4 - 2a ⇒ 4a = 4 ⇒ a = 1, từ đó b = 2. Chọn B
\(1.2\left(x+2\right)^2< 2x\left(x+2\right)+4\\ \Leftrightarrow2\left(x^2+4x+4\right)-2x\left(x+2\right)-4< 0\\ \Leftrightarrow2x^2+8x+4-2x^2-4x-4< 0\\ \Leftrightarrow4x< 0\\ \Leftrightarrow x< 0\\ 2.\left(x-1\right)^2+x^2< \left(x+1\right)^2+\left(x+2\right)^2\\ \Leftrightarrow x^2-2x+1+x^2< x^2+2x+1+x^2+4x+4\\ \Leftrightarrow2x^2-2x+1-2x^2-6x-5< 0\\ \Leftrightarrow-8x-4< 0\\ \Leftrightarrow8x>-4\\ \Leftrightarrow x>-\dfrac{1}{2}\\ 3.\left(x^2+1\right)\left(x-6\right)< \left(x-2\right)^3\\ \Leftrightarrow x^3-6x^2+x-6< x^3-6x^2+12x-8\\ \Leftrightarrow x-6< 12x-8\\ \Leftrightarrow12x-x>-6+8\\ \Leftrightarrow11x>2\\ \Leftrightarrow x>\dfrac{2}{11}\)