K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

A=\(x^2-\frac{1}{3}x+1=x^2-2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}+1\)

\(=\left(x+\frac{1}{6}\right)^2+\frac{35}{36}\)

Do \(\left(x+\frac{1}{6}\right)^2\ge0\)nên \(\left(x+\frac{1}{6}\right)^2+\frac{35}{36}>0\)và GTNN của A là  \(\frac{35}{36}\)

26 tháng 10 2017

hình như cái khúc (x+1/2)^2 phải là (x-1/2)^2 chứ bạn mk k hỉu rõ bạn giải thích giùm mk nhé

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Lời giải:

a) Ta thấy:

\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có hai nghiệm phân biệt với mọi $m$

b) Áp dụng định lý Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)

Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$

Ta có đpcm.

19 tháng 3 2017

2/ x+y=2 => y=2-x

\(\Rightarrow A=3x^2+y^2=3x^2+\left(2-x\right)^2=3x^2+4-4x+x^2=4x^2-4x+4\)

\(=\left(2x\right)^2-2.2x.1+1^2+3=\left(2x-1\right)^2+3\ge3\)

=>Amin=3 <=> (2x-1)2=0 <=> 2x-1=0 <=> 2x=1 <=> x=1/2 <=> y=3/2

19 tháng 3 2017

1/ Với x=0 thì \(A=\frac{4x^2}{x^4+1}=0\)

Với \(x\ne0\) thì \(x^4+1\ge2x^2>0\) nên \(A=\frac{4x^2}{x^4+1}\le\frac{4x^2}{2x^2}=2\)

Vậy Amax=2 khi \(x^4+1=2x^2\Leftrightarrow\left(x^2-1\right)^2=0\Leftrightarrow x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\)

<=> x=1 hoặc x=1

6 tháng 9 2020

\(A=3x^2-x+6x-2-3x^2-3x-2x+7\)  

\(=5\)  

Vậy A không phụ thuộc vào x  

\(B=\left(2x\right)^2-3^2-3x-4x^2+3x+1\) 

\(=4x^2-9-3x-4x^2+3x+1\) 

\(=-8\)  

Vậy B không phụ thuộc vào biến x 

6 tháng 9 2020

A = ( x + 2 )( 3x - 1 ) - x( 3x + 3 ) - 2x + 7 

= 3x2 + 5x - 2 - 3x2 - 3x - 2x + 7

= 5

Vậy A không phụ thuộc vào biến ( đpcm )

B = ( 2x - 3 )( 2x + 3 ) - x( 3 + 4x ) + 3x + 1

= [ ( 2x )2 - 32 ] - 3x - 4x2 + 3x + 1

= 4x2 - 9 - 4x2 + 1

= -8

Vậy B không phụ thuộc vào biến ( đpcm ) 

10 tháng 11 2021

Bạn tham khảo câu trả lời của mình tại :

Câu hỏi của Nguyễn Tiến Duy - Toán lớp 7 - Học trực tuyến OLM

10 tháng 11 2021

Vì \(\hept{\begin{cases}\left(x+5\right)^{2020}=x+\left(5^{1010}\right)^2≥0∀x\\\left|y-2021\right|≥0∀y\end{cases}}\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\ge2020∀x,y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\y-2021=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2021\end{cases}}\)

10 tháng 11 2021

Ta có:\(\left(x+5\right)^{20}\ge0\) 

\(\left|y-2021\right|\ge0\)
\(\Rightarrow A=\left(x+5\right)^{2020}+\left|y-2021\right|+2020\le2020\)

Dấu bằng xảy ra khi  \(x+5=0\Rightarrow x=-5\) ; \(y-2021=0\Rightarrow y=2021\)

Vậy, GTNN của A =2020 khi x=-5; y=2021