K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

a) \(\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

\(x=\frac{\left(\frac{4}{5}-\frac{1}{2}\right)}{\frac{2}{3}}\)

\(x=\frac{9}{20}\)

b) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)

\(\left|x+\frac{3}{4}\right|=0+\frac{1}{2}\)

\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-1}{4}\\x=\frac{-5}{4}\end{cases}}}\)

Vậy x=-1/4 hoặc x=-5/4

c) \(\left(x+\frac{1}{3}\right)^3=\frac{-1}{8}\)

\(\Leftrightarrow x+\frac{1}{3}=\frac{-1}{8}=\frac{\left(-1\right)^3}{2^3}=\frac{-1}{2}\)

\(x=\frac{-1}{2}-\frac{1}{3}\)

\(x=\frac{-5}{6}\)

26 tháng 10 2017

\(\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

\(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}\)

\(\frac{2}{3}x=\frac{3}{10}\)

\(x=\frac{3}{10}:\frac{2}{3}\)

\(x=\frac{9}{20}\)

b) l x + 3/4 l - 1/2 = 0

    l x + 3/4 l = 1/2

TH1 : \(x+\frac{3}{4}\le0\)                           TH2: \(x+\frac{3}{4}\ge0\)

=> \(x+\frac{3}{4}=-\frac{1}{2}\)                             =>   \(x+\frac{3}{4}=\frac{1}{2}\)

   \(x=-\frac{1}{2}-\frac{3}{4}\)                                            \(x=\frac{1}{2}-\frac{3}{4}\)

       \(x=-\frac{5}{4}\)                                                  \(x=-\frac{1}{4}\)

c) ( x + 1/3 )3 = ( -1/8 )

( x + 1/3 ) 3 = ( -1/3 )3

=> x + 1/3 = -1/3

x = -1/3 - 1/3

x = -2/3

2 tháng 9 2021

a) \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Rightarrow3x-6+2x-6=5\)

\(\Rightarrow5x=17\Rightarrow x=\dfrac{17}{5}\)

b) \(\left(2x-8\right)^2-16=0\)

\(\Rightarrow\left(2x-8-4\right)\left(2x-8+4\right)=0\)

\(\Rightarrow\left(2x-12\right)\left(2x-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=12\\2x=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)

c) \(\left(2x-1\right)^2-\left(4x+1\right)\left(x-3\right)=3\)

\(\Rightarrow4x^2-4x+1-4x^2+12x-x+3=3\)

\(\Rightarrow7x=-1\Rightarrow x=-\dfrac{1}{7}\)

a: Ta có: \(3\left(x-2\right)+2\left(x-3\right)=5\)

\(\Leftrightarrow3x-6+2x-6=5\)

\(\Leftrightarrow5x=17\)

hay \(x=\dfrac{17}{5}\)

b: Ta có: \(\left(2x-8\right)^2-16=0\)

\(\Leftrightarrow\left(2x-4\right)\left(2x-12\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

10 tháng 9 2021

a)3(x-2)+2(x-3)=5

=>3x-6+2x-6=5

=>5x=17

=>x=17/5

10 tháng 9 2021

b)(2x-8)^2=16

TH1:2x-8=4=>x=6

TH2:2x-8=-4=>x=2

24 tháng 6 2021

`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`

`đk:x ne 0,x ne -2`

`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`

`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`

`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`

`=-4/(x+2)^2*(x+2)/4`

`=-1/(x+2)`

`b)P<0`

`<=>-1/(x+2)<0`

Vì `-1<0`

`<=>x+2>0`

`<=>x> -2`

`c)P=1/x+1(x ne 0)`

`<=>-1/(x+2)=1/x+1`

`<=>1/x+1+1/(x+2)=0``

`<=>x+2+x(x+2)+x=0`

`<=>x^2+4x+2=0`

`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\) 

`d)|2x-1|=3`

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\) 

`x=-1=>P=-1/(-1+2)=-1`

`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?

24 tháng 6 2021

a) đk: \(x\ne-2;2\)

 \(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)

\(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)

\(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)

b) Để P < 0

<=> \(\dfrac{-1}{x+2}< 0\)

<=> x +2 > 0

<=> x > -2 ( x khác 2)

c) Để P= \(\dfrac{1}{x}+1\)

<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)

<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)

<=> x2 + 4x + 2 = 0

<=> (x+2)2 = 2

<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)

d) Để \(\left|2x-1\right|=3\)

<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)

Thay x = -1, ta có:

P = \(\dfrac{-1}{-1+2}=-1\)

 

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)

29 tháng 12 2023

a: (x-2)(x+2)-(x+1)2=1

=>\(x^2-4-\left(x^2+2x+1\right)=1\)

=>\(x^2-4-x^2-2x-1=1\)

=>-2x-5=1

=>-2x=6

=>\(x=\dfrac{6}{-2}=-3\)

b: Sửa đề:\(x^3-8-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x^3-8\right)-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-4\right)=0\)

=>\(\left(x-2\right)\left(x^2+2x+4-x+4\right)=0\)

=>\(\left(x-2\right)\left(x^2+x\right)=0\)

=>x(x+1)(x-2)=0

=>\(\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)

c: 3x(x-1)+1-x=0

=>3x(x-1)-(x-1)=0

=>(x-1)(3x-1)=0

=>\(\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

a: Ta có: \(5\left(4x-1\right)+2\left(1-3x\right)-6\left(x+5\right)=10\)

\(\Leftrightarrow20x-5+2-6x-6x-30=10\)

\(\Leftrightarrow8x=43\)

hay \(x=\dfrac{43}{8}\)

b: ta có: \(2x\left(x+1\right)+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)+6x^2=0\)

\(\Leftrightarrow2x^2+2x+3x^2-3-5x^2-5x+6x^2=0\)

\(\Leftrightarrow6x^2-3x-3=0\)

\(\Leftrightarrow2x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

9 tháng 9 2021

câu c,d đâu 

Bài 4: 

b: Ta có: \(2x\left(x-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)