Tìm x biêt' :
a) 1/2 + 2/3 . x = 4/5
b) | x + 3/4 | - 1/2 = 0
c) ( x + 1/3 )^3 = ( -1/8 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3\left(x-2\right)+2\left(x-3\right)=5\)
\(\Rightarrow3x-6+2x-6=5\)
\(\Rightarrow5x=17\Rightarrow x=\dfrac{17}{5}\)
b) \(\left(2x-8\right)^2-16=0\)
\(\Rightarrow\left(2x-8-4\right)\left(2x-8+4\right)=0\)
\(\Rightarrow\left(2x-12\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=12\\2x=4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=6\\x=2\end{matrix}\right.\)
c) \(\left(2x-1\right)^2-\left(4x+1\right)\left(x-3\right)=3\)
\(\Rightarrow4x^2-4x+1-4x^2+12x-x+3=3\)
\(\Rightarrow7x=-1\Rightarrow x=-\dfrac{1}{7}\)
a: Ta có: \(3\left(x-2\right)+2\left(x-3\right)=5\)
\(\Leftrightarrow3x-6+2x-6=5\)
\(\Leftrightarrow5x=17\)
hay \(x=\dfrac{17}{5}\)
b: Ta có: \(\left(2x-8\right)^2-16=0\)
\(\Leftrightarrow\left(2x-4\right)\left(2x-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
`a)P=(x/(x+2)-(x^3-8)/(x^3+8)*(x^2-2x+4)/(x^2-4)):4/(x+2)`
`đk:x ne 0,x ne -2`
`P=(x/(x+2)-((x-2)(x^2+2x+4))/((x+2)(x^2-2x+4))*(x^2-2x+4)/((x-2)(x+2)))*(x+2)/4`
`=(x/(x+2)-(x^2+2x+4)/(x+2)^2)*(x+2)/4`
`=(x^2+2x-x^2-2x-4)/(x+2)^2*(x+2)/4`
`=-4/(x+2)^2*(x+2)/4`
`=-1/(x+2)`
`b)P<0`
`<=>-1/(x+2)<0`
Vì `-1<0`
`<=>x+2>0`
`<=>x> -2`
`c)P=1/x+1(x ne 0)`
`<=>-1/(x+2)=1/x+1`
`<=>1/x+1+1/(x+2)=0``
`<=>x+2+x(x+2)+x=0`
`<=>x^2+4x+2=0`
`<=>` \(\left[ \begin{array}{l}x=\sqrt2-2\\x=-\sqrt2-2\end{array} \right.\)
`d)|2x-1|=3`
`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=2(l)\\x=-1(tm)\end{array} \right.\)
`x=-1=>P=-1/(-1+2)=-1`
`e)P=-1/(x+2)` thì nhỏ nhất cái gì nhỉ?
a) đk: \(x\ne-2;2\)
\(P=\left[\dfrac{x}{x+2}-\dfrac{\left(x-2\right)\left(x^2+2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}.\dfrac{x^2-2x+4}{\left(x-2\right)\left(x+2\right)}\right]:\dfrac{4}{x+2}\)
= \(\left[\dfrac{x}{x+2}-\dfrac{x^2+2x+4}{\left(x+2\right)^2}\right].\dfrac{x+2}{4}\)
= \(\dfrac{x^2+2x-x^2-2x-4}{\left(x+2\right)^2}.\dfrac{x+2}{4}\) = \(\dfrac{-4}{4\left(x+2\right)}=\dfrac{-1}{x+2}\)
b) Để P < 0
<=> \(\dfrac{-1}{x+2}< 0\)
<=> x +2 > 0
<=> x > -2 ( x khác 2)
c) Để P= \(\dfrac{1}{x}+1\)
<=> \(\dfrac{-1}{x+2}=\dfrac{1}{x}+1\)
<=> \(\dfrac{1}{x}+\dfrac{1}{x+2}+1=0\)
<=> \(\dfrac{x+2+x+x\left(x+2\right)}{x\left(x+2\right)}=0\)
<=> x2 + 4x + 2 = 0
<=> (x+2)2 = 2
<=> \(\left[{}\begin{matrix}x=\sqrt{2}-2\left(c\right)\\x=-\sqrt{2}-2\left(c\right)\end{matrix}\right.\)
d) Để \(\left|2x-1\right|=3\)
<=> \(\left[{}\begin{matrix}2x-1=3< =>x=2\left(l\right)\\2x-1=-3< =>x=-1\left(c\right)\end{matrix}\right.\)
Thay x = -1, ta có:
P = \(\dfrac{-1}{-1+2}=-1\)
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
a: (x-2)(x+2)-(x+1)2=1
=>\(x^2-4-\left(x^2+2x+1\right)=1\)
=>\(x^2-4-x^2-2x-1=1\)
=>-2x-5=1
=>-2x=6
=>\(x=\dfrac{6}{-2}=-3\)
b: Sửa đề:\(x^3-8-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x^3-8\right)-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4-x+4\right)=0\)
=>\(\left(x-2\right)\left(x^2+x\right)=0\)
=>x(x+1)(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)
c: 3x(x-1)+1-x=0
=>3x(x-1)-(x-1)=0
=>(x-1)(3x-1)=0
=>\(\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
a: Ta có: \(5\left(4x-1\right)+2\left(1-3x\right)-6\left(x+5\right)=10\)
\(\Leftrightarrow20x-5+2-6x-6x-30=10\)
\(\Leftrightarrow8x=43\)
hay \(x=\dfrac{43}{8}\)
b: ta có: \(2x\left(x+1\right)+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)+6x^2=0\)
\(\Leftrightarrow2x^2+2x+3x^2-3-5x^2-5x+6x^2=0\)
\(\Leftrightarrow6x^2-3x-3=0\)
\(\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Bài 4:
b: Ta có: \(2x\left(x-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\)
a) \(\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
\(x=\frac{\left(\frac{4}{5}-\frac{1}{2}\right)}{\frac{2}{3}}\)
\(x=\frac{9}{20}\)
b) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\left|x+\frac{3}{4}\right|=0+\frac{1}{2}\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-1}{4}\\x=\frac{-5}{4}\end{cases}}}\)
Vậy x=-1/4 hoặc x=-5/4
c) \(\left(x+\frac{1}{3}\right)^3=\frac{-1}{8}\)
\(\Leftrightarrow x+\frac{1}{3}=\frac{-1}{8}=\frac{\left(-1\right)^3}{2^3}=\frac{-1}{2}\)
\(x=\frac{-1}{2}-\frac{1}{3}\)
\(x=\frac{-5}{6}\)
\(\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
\(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}\)
\(\frac{2}{3}x=\frac{3}{10}\)
\(x=\frac{3}{10}:\frac{2}{3}\)
\(x=\frac{9}{20}\)
b) l x + 3/4 l - 1/2 = 0
l x + 3/4 l = 1/2
TH1 : \(x+\frac{3}{4}\le0\) TH2: \(x+\frac{3}{4}\ge0\)
=> \(x+\frac{3}{4}=-\frac{1}{2}\) => \(x+\frac{3}{4}=\frac{1}{2}\)
\(x=-\frac{1}{2}-\frac{3}{4}\) \(x=\frac{1}{2}-\frac{3}{4}\)
\(x=-\frac{5}{4}\) \(x=-\frac{1}{4}\)
c) ( x + 1/3 )3 = ( -1/8 )
( x + 1/3 ) 3 = ( -1/3 )3
=> x + 1/3 = -1/3
x = -1/3 - 1/3
x = -2/3