cho ΔABC cân tại A có đường phân giác AD và đường trung tuyến BE cắt nhau tại H
a, Chứng minh ΔADB=ΔADC
b, Chứng minh ΔBHC là tam giác cân
c, Trên tia đối của tia EB lấy F sao cho EH=EF . Gọi G là giao điểm của FD với CH . Chứng minh BG đi qua trung điểm I của CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABD và ACD có
AB=AC (tam giác ABC cân tại A)
Góc B = góc C ( 2 góc ở đáy của tam giác cân)
Canh AD chung
Suy ra tam giác ABD= tam giác ACD
Nen goc BAD=CAD(2 goc tuong ung)
Nên AD là tia phân giác của góc A
Suy ra AD là đường phân giác ,đường cao,đường trung trực,đường trung tuyến(tính chất tam giác cân)
Xét hai tam giác ABD và ACD:
AB = AC (tam giác ABC cân tại A);
\(\widehat {BAD} = \widehat {CAD}\)(AD là phân giác của góc A);
AD chung.
Vậy \(\Delta ABD = \Delta ACD\)(c.g.c).
Suy ra: BD = CD ( 2 cạnh tương ứng) hay D là trung điểm của cạnh BC. Vậy AD là đường trung tuyến của tam giác ABC.
Do ∆ABC cân tại A
⇒ AB = AC và ∠ABC = ∠ACB
⇒ ∠ABD = ∠ACD
Do AD là đường phân giác của ∠BAC
⇒ ∠BAD = ∠CAD
Xét ∆ABD và ∆ACD có:
∠BAD = ∠CAD (cmt)
AB = AC (cmt)
∠ABD = ∠ACD (cmt)
⇒ ∆ABD = ∆ACD (g-c-g)
⇒ BD = CD (hai cạnh tương ứng)
⇒ D là trung điểm của BC
Vậy AD là đường trung tuyến của ∆ABC
ta có:\(AD\)là tia phân giác của góc \(\widehat{BAC}\)
Mà \(\Delta ABC\)cân tại A
\(\Rightarrow\)\(AD\)là trung tuyến của\(\widehat{BAC}\)(trong \(\Delta\)cânđường phân giác đòng thời à đường trung tuyến ứng vs cạch đáy)
có thể ghi gọn hơn chỉ giải thik cho hỉu thui
a) So sánh AB và BC
b) Chứng minh CH đi qua trung điểm của cạnh AB
C) Chứng minh 3 điểm A, H, K thẳng hàng
Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AB = AC (gt)
AD là cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (do AD là tia phân giác)
\(\Rightarrow\Delta ABD=\Delta ACD\left(c-g-c\right)\)
\(\Rightarrow BD=CD\) (hai cạnh tương ứng)
\(\Rightarrow D\) là trung điểm của BC
\(\Rightarrow AD\) là đường trung tuyến của \(\Delta ABC\)
Ta co: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường trung tuyến của ΔABC
a: Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔABH=ΔACH
=>BH=CH
b: Xét ΔEAH và ΔECF có
góc EAH=góc ECF
EA=EC
góc AEH=góc CEF
=>ΔEAH=ΔECF
=>EH=EF
a: Xét ΔADB và ΔADC có
AD chung
\(\widehat{BAD}=\widehat{CAD}\)
AB=AC
Do đó: ΔADB=ΔADC
b: ΔADB=ΔADC
=>DB=DC
=>D là trung điểm của BC
ΔABD=ΔACD
=>\(\widehat{ADB}=\widehat{ADC}\)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
=>AD\(\perp\)BC
Xét ΔHBC có
HD là đường trung tuyến
HD là đường cao
Do đó ΔHBC cân tại H
c: Xét ΔABC có
BE,AD là các đường trung tuyến
BE cắt AD tại H
Do đó: H là trọng tâm của ΔABC
=>BH=2HE
mà HF=2HE
nên BH=HF
=>H là trung điểm của BF
Xét ΔFBC có
FD,CH là các đường trung tuyến
FD cắt CH tại G
Do đó: G là trọng tâm của ΔFBC
=>BG đi qua trung điểm của CF