Giải bài toán bằng cách lập phương trình
Tìm hai số tự nhiên liên tiếp biết tổng của chúng bằng 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 3 số đó lần lượt là n ; n+1 ; n+2 , ta có :
n2 + ( n + 1 )2 + ( n + 2 )2 = 77 => 3n2 + 6n + 5 = 77 => 3n( n + 2) =72 => n( n +2 ) = 24
Dễ dàng giải được n = 4 ( vì n là số tự nhiên ). Vậy 3 số cần tìm là 4 ;5 ;6.
Có thể gọi 3 ssos đó là n-1 ; n ; n+1 để phương trình đơn giản hơn
Gọi số tự nhiên cần tìm có dạng là ab(Điều kiện: \(a,b\in Z^+\); \(0< a< 10\); \(0< b< 10\))
Vì tổng các chữ số của nó bằng 10 nên ta có phương trình: a+b=10(1)
Vì khi số ấy viết theo thứ tự ngược lại thì số ấy giảm 36 đơn vị nên ta có phương trình:
\(10b+a=10a+b-36\)
\(\Leftrightarrow10b+a-10a-b=-36\)
\(\Leftrightarrow-9a+9b=-36\)
\(\Leftrightarrow a-b=4\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=10\\a-b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=6\\a-b=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=4+b\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4+3=7\\b=3\end{matrix}\right.\)
Vậy: Số cần tìm là 73
1: Số lớn là 60:4*5=75
Số bé là 75-60=15
2: Số lớn là 147*6/7=126
Số bé là 147-126=21
3:
Số thứ nhất là (100+42)/2=142/2=71
Số thứ hai là 71-42=29
Gọi số lớn là a, số bé là b(a,b thuộc tập hợp số tự nhiên)
Theo bài ra ta có:
a+b=1012
2a+b=2014
Vậy: (a+b)+(2a+b)=1012+2014
a+b+2a+b=3026
a+2a+2b=3026
a+2(a+b)=3026
a+2.1012=3026
a+2024=3026
a=3026-2024
a=1002
b=1012-1002=10
vậy số lớn là 1002
số bé là 10
Gọi số lớn là a , số bé là b \(\left(a>b;a,b\in N\right)\)
Tổng 2 số là : a + b = 99
Nếu lấy số lớn chia cho số nhỏ đươc thương là 2 và số dư là 18 : a = 2b + 18 => a - 2b = 18
Giải hệ: \(\hept{\begin{cases}a+b=99\\a-2b=18\end{cases}\Rightarrow\hept{\begin{cases}a=99-b\\99-b-2b=18\end{cases}\Rightarrow}\hept{\begin{cases}a=99-b\\b=27\end{cases}\Rightarrow}\hept{\begin{cases}a=72\\b=27\end{cases}}}\)
Vậy số lớn là 72 , số bé là 27
Gọi số cần tìm là ab (đk)
Theo đề bài ta có hpt:
\(\hept{\begin{cases}10a+b=a^2+b^2-11\\10a+b=2ab+5\end{cases}}\)\(\Rightarrow2ab+5=a^2+b^2-11\)
\(\Leftrightarrow a^2+b^2-2ab=16\)
\(\Leftrightarrow\left(a-b\right)^2=16\Rightarrow\orbr{\begin{cases}a-b=4\\a-b=-4\end{cases}}\)
TH1: Nếu a = b+4\(\Rightarrow10\left(b+4\right)+b=2\left(b+4\right)b+5\)
\(\Leftrightarrow3b+35-2b^2=0\)\(\Leftrightarrow\left(7+2b\right)\left(b-5\right)=0\Rightarrow b=5\Rightarrow a=9\)
TH2: Nếu a = -4+b\(\Rightarrow10\left(-4+b\right)+b=2\left(b-4\right)b+5\)
\(\Leftrightarrow-45+19b-2b^2=0\Leftrightarrow\left(b-5\right)\left(-2b+9\right)=0\)\(\Rightarrow b=5\Rightarrow a=1\)
Vậy số cần tìm là 95 và 15
- Gọi số cần tìm là \(\overline{ab}\).
- Vì tổng hai chữ số của số đó bằng 11 nên a+b=11.
- Vì nếu chia chữ số hàng chục cho chữ số hàng đơn vị thì được thương là 4 dư 1 nên a=4b+1.
=>4b+1+b=11
=>5b=10
=>b=2.
=>a+2=11
=>a=9
- Vậy số đó là 92.
Gọi số cần tìm là ¯¯¯¯¯ab(a≠0;a,b∈N)ab¯(a≠0;a,b∈N)
Theo bài ra ta có :
{a+b=11a=4b+1⇔{5b+1=11a=4b+1{a+b=11a=4b+1⇔{5b+1=11a=4b+1
⇔{5b=10a=4b+1⇔{b=2a=4.2+1=9⇔{5b=10a=4b+1⇔{b=2a=4.2+1=9( t/m )
Vậy số cần tìm là 92
học tốt nha bạn
Em xem lại đề nhé. Số học sinh của lớp 8A luôn nhiều hơn số học sinh của lớp 8B thì sao của lớp 8B đã chuyển 5 hs sang 8A mà 8B = 11/9 8A được
Gọi số nhỏ hơn là x. (\(x\in N;0< x< 11\))
Do 2 số tự nhiên hơn kém nhau 1 đơn vị => Số lớn hơn là x + 1.
Do tổng 2 số là 11 nên ta có pt : x + (x + 1) = 11 <=> 2x + 1 = 11 <=> x = 5 (thỏa mãn đk).
Vậy 2 số tự nhiên cần tìm là 5 và 6.
Gọi số bé và số lớn là \(a\)và \(a+1\)\(\left(a\ge0\right)\)
Tổng hai số là 11 : \(a+a+1=11\)
\(< =>2a=10\)
\(< =>x=\frac{10}{2}=5\)
Vậy ...