Cho \(x+y+z=3\). Tìm GTNN của biểu thức sau:
\(\sqrt{2x^2+3xy+3y^2}+\sqrt{2y^2+3yz+z^2}+\sqrt{2z^2+2xz+x^2}\)
giải giùm, cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
Áp dụng BĐT Cô-si ta có:
\(2x^2+3xy+4y^2\ge3\sqrt[3]{2x^2\cdot3xy\cdot4y^2}=3\sqrt[3]{24x^3y^3}\Rightarrow\sqrt{2x^2+3xy+4y^2}\ge\sqrt{xy\cdot3\sqrt[3]{24}}\)
Tương tự: \(\sqrt{2y^2+3yz+4z^2}\ge\sqrt{yz\cdot3\sqrt[3]{24}}\); \(\sqrt{2z^2+3zx+4x^2}\ge\sqrt{zx\cdot3\sqrt[3]{24}}\)
Cộng theo vế 3 BĐT vừa tìm, ta được:
\(P\ge\sqrt{3\sqrt[3]{24}}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\sqrt{3\sqrt[3]{24}}=\sqrt[6]{648}\)
\(2x^2+2xy+5y^2=\left(x+2y\right)^2+\left(x-y\right)^2\ge\left(x+2y\right)^2\)
\(\Rightarrow P\ge\dfrac{x+2y}{3x+y+5z}+\dfrac{y+2z}{3y+z+5x}+\dfrac{z+2x}{3x+x+5y}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{\left(x+2y\right)\left(3x+y+5z\right)}+\dfrac{\left(y+2z\right)^2}{\left(y+2z\right)\left(3y+z+5x\right)}+\dfrac{\left(z+2x\right)^2}{\left(z+2x\right)\left(3x+x+5y\right)}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y\right)^2}{3x^2+2y^2+7xy+5xz+10yz}+\dfrac{\left(y+2z\right)^2}{3y^2+2z^2+7yz+5xy+10xz}+\dfrac{\left(z+2x\right)^2}{3z^2+2x^2+7xz+5yz+10xy}\)
\(\Rightarrow P\ge\dfrac{\left(x+2y+y+2z+z+2x\right)^2}{5\left(x^2+y^2+z^2\right)+22\left(xy+xz+yz\right)}\)
\(\Rightarrow P\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+12\left(xy+xz+yz\right)}\ge\dfrac{9\left(x+y+z\right)^2}{5\left(x+y+z\right)^2+\dfrac{12\left(x+y+z\right)^2}{3}}\)
\(\Rightarrow P\ge1\)
\(\Rightarrow P_{min}=1\) khi \(x=y=z\)
C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)
\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)
\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)
Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);
\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)
\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)
\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)
\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)