cho a>0, b>0, chứng minh:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cosi cho 3 số dương a,b,c>0
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}.\dfrac{1}{b}.\dfrac{1}{c}}\)
Suy ra\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{a}.\dfrac{1}{b}.\dfrac{1}{c}}=9\sqrt[3]{\dfrac{abc}{abc}}=9\)
Vậy \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Áp dụng bất đẳng thức AM - GM ta ccó :
\(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=2\sqrt{\frac{1}{c^2}}=\frac{2}{c}\)(1)
\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=2\sqrt{\frac{1}{a^2}}=\frac{2}{a}\)(2)
\(\frac{a}{bc}+\frac{c}{ab}\ge2\sqrt{\frac{a}{bc}.\frac{c}{ab}}=2\sqrt{\frac{1}{b^2}}=\frac{2}{b}\)(3)
Cộng vế với vế của (1);(2);(3) lại ta được :
\(\frac{2a}{bc}+\frac{2b}{ac}+\frac{2c}{ab}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\)
\(\Leftrightarrow2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)(đpcm)
a, b, c > 0
Áp dụng bất đẳng thức AM - GM (Cauchy):
\(\dfrac{a}{b^2}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{b^2}.\dfrac{1}{a}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\)
\(\dfrac{b}{c^2}+\dfrac{1}{b}\ge2\sqrt{\dfrac{b}{c^2}.\dfrac{1}{b}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\)
\(\dfrac{c}{a^2}+\dfrac{1}{c}\ge2\sqrt{\dfrac{c}{a^2}.\dfrac{1}{c}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\)
Vậy ta có :
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{b}+\dfrac{2}{c}+\dfrac{2}{a}\)
\(\Leftrightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) (đpcm)
Cách dùng hằng đẳng thức:
\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\)
\(=\left(\dfrac{a}{b^2}-\dfrac{2}{b}+\dfrac{1}{a}\right)+\left(\dfrac{b}{c^2}-\dfrac{2}{c}+\dfrac{1}{b}\right)+\left(\dfrac{c}{a^2}-\dfrac{2}{a}+\dfrac{1}{c}\right)\)
\(=\left(\dfrac{\sqrt{a}}{b}-\dfrac{1}{\sqrt{a}}\right)^2+\left(\dfrac{\sqrt{b}}{c}-\dfrac{1}{\sqrt{b}}\right)^2+\left(\dfrac{\sqrt{c}}{a}-\dfrac{1}{\sqrt{c}}\right)^2\ge0\)
áp dụng bdt côsi \(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{3}{b}\)
tuông tu \(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{3}{c}\)
\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{3}{a}\)
suy ra vt +\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
suy ra dpcm
dau = xay ra khi a=b=c
Khó quá. Đúng là Câu Hỏi Hay!!
a)Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)
Nhân theo vế 2 BĐT trên có:
\(A\ge9\sqrt[3]{abc\cdot\dfrac{1}{abc}}=9\)
Khi \(a=b=c\)
Bài 2:
a)Sửa đề \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{\left(1+1\right)^2}{x+y}=\dfrac{4}{x+y}\)
Khi \(x=y\)
b)Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}=\dfrac{4}{2b}=\dfrac{2}{b}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{2}{c};\dfrac{1}{c+a-b}+\dfrac{1}{a+b-c}\ge\dfrac{2}{a}\)
Cộng theo vế 3 BĐT trên ta có:
\(2VT\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2VP\Leftrightarrow VT\ge VP\)
Khi \(a=b=c\)
Câu 1: Với \(a;b;c>0\), theo bất đẳng thức Cauchy:
\(a+b+c\ge3.\sqrt[3]{abc}\). Dấu "=" xảy ra khi \(a=b=c\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3.\sqrt[3]{\dfrac{1}{abc}}\). Dấu "=" xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
Nhân theo vế ta được \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
\(\Rightarrow MinA=9\)
Dấu "=" xảy ra khi a = b = c
a)Svac-so:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)
b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)
\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)
\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)
Áp dụng bđt AM-GM: \(\dfrac{a}{b^2}+\dfrac{1}{a}\ge2\sqrt{\dfrac{a}{b^2a}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\) \(\dfrac{b}{c^2}+\dfrac{1}{b}\ge2\sqrt{\dfrac{b}{c^2b}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\) \(\dfrac{c}{a^2}+\dfrac{1}{c}\ge2\sqrt{\dfrac{c}{a^2c}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\) Cộng theo vế: \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\Leftrightarrow\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)Dấu "=" xảy ra khi: \(a=b=c\)
k mình được không mình mới có 3 điểm
chịu bà ơi