K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

từ đề = |x+1| + |x-1| (1)

+/ nếu x >1 thì x-1>0 và x+1>0 

suy ra (1)=2x mà x>1 nên (1) > 2 

+/ nếu -1>=x>=1 thì x-1<=0 và x+1>=0 

suy ra (1)=2

+/ nếu x<1 thì x-1 và x+1 bé hơn hoặc bằng 2

suy ra (1)=-2x

mà x<1 nên (1)>2

 vậy MIN=2 <=> -1<=x<=1

22 tháng 10 2017

\(=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(=\left|x+1\right| +\left|1-x\right|\ge\left|x+1+1-x\right|=2\)

Vậy giá trị nhỏ nhất bằng 2, với \(-1\le x\le1\)

Bài 2: 

a: \(A=2\sqrt{7}-1+\left(\sqrt{7}+4\right)\)

\(=2\sqrt{7}-1+\sqrt{7}+4=3\sqrt{7}+3\)

b: \(B=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)

\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)

12 tháng 8 2018

ta có : \(P=\sqrt{x^2-2x+5}=\sqrt{\left(x-1\right)^2+4}\ge\sqrt{4}=2\)

\(\Rightarrow P_{min}=2\) khi \(x=1\)

vậy GTNN của \(P\)\(2\) khi \(x=1\)

NV
9 tháng 4 2019

\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)

Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)

\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)

\(M=2a^2+a-4=2a^2+3a-2a-3-1\)

\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)

\(M=\left(a-1\right)\left(2a+3\right)-1\)

Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)

\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)

8 tháng 1 2018

a ) Tìm GTLN : Áp dụng BĐT bunhiacopski, ta có :

Dầu bằng xảy ra khi \(x-1=5-x\Leftrightarrow x=3\).

8 tháng 1 2018

Sao ko hiện làm lại :

\(\left(\sqrt{x-1}.1+\sqrt{5-x}.1\right)^2\le\) bé hơn hoặc bằng ( 1 + 1 ) ( x - 1 + 5 -x ) = 8 

8 tháng 1 2018

a) ĐK \(x\ge1\)

với \(x\ge1\Rightarrow\hept{\begin{cases}\sqrt{x-1}\ge0\\\sqrt{5+x}\ge\sqrt{6}\end{cases}\Rightarrow\sqrt{x-1}+\sqrt{5+x}\ge\sqrt{6}}\)

dâu = xảy ra <=>x=1

b)Dặt ...=A

Ta có A=\(\frac{2}{9}x+\frac{1}{2x}+\frac{2}{9}y+\frac{1}{2y}+\frac{7}{9}\left(x+y\right)\)

Áp dụng BĐT cô-si, ta có \(\frac{2}{9}x+\frac{1}{2x}\ge\frac{2}{3}\)

tương tự có \(\frac{2}{9}y+\frac{1}{2y}\ge\frac{2}{3}\)

Mà \(x+y\ge3\Rightarrow\frac{7}{9}\left(x+y\right)\ge\frac{7}{3}\)

=>\(A\ge\frac{2}{3}+\frac{2}{3}+\frac{7}{3}=\frac{11}{3}\)

Dấu = xảy ra <=>\(x=y=\frac{3}{2}\)

^_^

8 tháng 1 2018

b) Nó ko > = 11/3 =))