A=1/4+1/9+1/16+1/25+1/36+1/49+1/64+1/81+1/100 b=9/10 so sánh a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Quy đồng pso và tính như bthg (4824829/6350400)
b) Vì 4814819 < 6350400 => A < 1
A=1/22+1/32+...+1/92
Ta có:1/22>1/2.3,1/32>1/3.4,...,1/92>1/9.10
⇒A>1/2.3+1/3.4+...+1/9.10
A>1/2-1/3+1/3-1/4+...+1/9-1/10
A>1/2-1/10
A>2/5(đpcm)
\(\dfrac{1}{10}+\dfrac{4}{20}+\dfrac{9}{30}+\dfrac{16}{40}+\dfrac{25}{50}+\dfrac{36}{60}+\dfrac{49}{70}+\dfrac{64}{80}+\dfrac{81}{90}\)
\(=\dfrac{1}{10}+\dfrac{1}{5}+\dfrac{3}{10}+\dfrac{2}{5}+\dfrac{1}{2}+\dfrac{3}{5}+\dfrac{7}{10}+\dfrac{4}{5}+\dfrac{9}{10}\)
\(=\left(\dfrac{1}{10}+\dfrac{3}{10}+\dfrac{7}{10}+\dfrac{9}{10}\right)+\left(\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}\right)+\dfrac{1}{2}\)
\(=2+2+\dfrac{1}{2}\)
\(=4+\dfrac{1}{2}\)
\(=\dfrac{8}{2}+\dfrac{1}{2}=\dfrac{9}{2}\)
Ta có: \(\dfrac{1}{5}+\dfrac{4}{10}+\dfrac{9}{15}+\dfrac{16}{20}+\dfrac{25}{25}+\dfrac{36}{30}+\dfrac{49}{35}+\dfrac{64}{40}+\dfrac{81}{45}\)
\(=\dfrac{1}{5}+\dfrac{2}{5}+\dfrac{3}{5}+\dfrac{4}{5}+\dfrac{5}{5}+\dfrac{6}{5}+\dfrac{7}{5}+\dfrac{8}{5}+\dfrac{9}{5}\)
\(=\dfrac{45}{5}=9\)
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+....+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(1+2+3+.....+9\right)}{10}\)
\(=\frac{45}{10}=\frac{9}{2}\)
\(S=\frac{1}{10}+\frac{2^2}{20}+\frac{3^2}{30}+....+\frac{9^2}{90}=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{45}{10}=\frac{9}{2}\)
Rút gọn tất cả các phân số ta có:
\(\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+\frac{4}{10}+\frac{5}{10}+\frac{6}{10}+\frac{7}{10}+\frac{8}{10}+\frac{9}{10}\)
\(=\frac{1+2+3+4+5+6+7+8+9}{10}=\frac{45}{10}=\frac{9}{2}\)
\(\dfrac{1}{4}=\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)
\(\dfrac{1}{9}=\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)
...
\(\dfrac{1}{100}=\dfrac{1}{10^2}< \dfrac{1}{9\cdot10}=\dfrac{1}{9}-\dfrac{1}{10}\)
Do đó: \(A=\dfrac{1}{4}+\dfrac{1}{9}+..+\dfrac{1}{100}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
=>\(A< 1-\dfrac{1}{10}=\dfrac{9}{10}\)
=>A<B