Cho 3 số a, b, c thỏa mãn : \(\dfrac{a}{2013}=\dfrac{b}{2014}=\dfrac{c}{2015}\)
Chứng minh \(4\left(a-b\right).\left(b-c\right)=\left(c-a\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:
Đặt \(\dfrac{a}{2013}=\dfrac{a}{2014}=\dfrac{a}{2015}=k\)
\(\Rightarrow a=2013k,b=2014k,c=2015k\)
Vế trái
\(4\left(2013k-2014k\right).\left(2015k-2016k\right)\)\(=4.-k.-k=4k^2\)
Vế phải
\(\left(2015k-2013k\right)^2\)\(=\left(2k\right)^2=4k^2\)
\(\Rightarrow\)4(a−b).(b−c)=(c−a)\(\Rightarrow\)đpcm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2013}=\dfrac{b}{2014}=\dfrac{c}{2015}=\dfrac{a-b}{2013-2014}=\dfrac{b-c}{2014-2015}=\dfrac{c-a}{2015-2013}\)\(\Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow\dfrac{a-b}{-1}.\dfrac{b-c}{-1}=\left(\dfrac{c-a}{2}\right)^2\)
\(\Rightarrow\dfrac{\left(a-b\right)\left(b-c\right)}{1}=\dfrac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Theo giả thiết kết hợp sử dụng BĐT AM - GM có:
\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)
\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)
Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)
\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)
Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:
\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)
\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)
Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)
(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)
=[(căn (a+b)(1/a+1/b))-1]^2
=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)
=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)
=>a/b+b/a>=7
(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2
=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304
=>ĐPCM
Đặt \(P=\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(abc\right)^2}{a^3\left(b+c\right)}+\dfrac{\left(abc\right)^2}{b^3\left(c+a\right)}+\dfrac{\left(abc\right)^2}{c^3\left(a+b\right)}\)
\(P=\dfrac{\left(bc\right)^2}{a\left(b+c\right)}+\dfrac{\left(ca\right)^2}{b\left(c+a\right)}+\dfrac{\left(ab\right)^2}{c\left(a+b\right)}\)
\(P\ge\dfrac{\left(bc+ca+ab\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\) (BĐT B.C.S)
\(=\dfrac{ab+bc+ca}{2}\) \(\ge\dfrac{3\sqrt[3]{abbcca}}{2}=\dfrac{3}{2}\) (do \(abc=1\)).
ĐTXR \(\Leftrightarrow a=b=c=1\)
Lời giải:
Áp dụng BĐT AM-GM:
$\frac{a^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq 3\sqrt[3]{\frac{a^3}{64}}=\frac{3}{4}a$
$\frac{b^3}{(b+c)(b+a)}+\frac{b+c}{8}+\frac{b+a}{8}\geq \frac{3}{4}b$
$\frac{c^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3}{4}c$
Cộng 3 BĐT trên và thu gọn:
$\Rightarrow \frac{a^3}{(a+b)(a+c)}+\frac{b^3}{(b+a)(b+c)}+\frac{c^3}{(c+a)(c+b)}\geq \frac{1}{4}(a+b+c)=\frac{1}{4}.3=\frac{3}{4}$
Vậy ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{(b+2)(c+3)}+\frac{b+2}{36}+\frac{c+3}{48}\geq 3\sqrt[3]{\frac{a^3}{36.48}}=\frac{a}{4}\)
Tương tự:\(\frac{b^3}{(c+2)(a+3)}+\frac{c+2}{36}+\frac{a+3}{48}\geq \frac{b}{4}\)
\(\frac{c^3}{(a+2)(b+3)}+\frac{a+2}{36}+\frac{b+3}{48}\geq \frac{c}{4}\)
Cộng theo vế các BĐT trên và rút gọn ta có:
\(\frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\)
Mà cũng theo AM-GM:
\(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow \frac{a^3}{(b+2)(c+3)}+\frac{b^3}{(c+2)(a+3)}+\frac{c^3}{(a+2)(b+3)}\geq \frac{29}{144}(a+b+c)-\frac{17}{48}\geq \frac{29}{144}.3-\frac{17}{48}=\frac{1}{4}\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(a^2+b^2+c^2\ge ab+bc+ca=2\)
Áp dụng BĐT C-S:
\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)
Đặt \(a^2+b^2+c^2=x\)
Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)
\(\Leftrightarrow x\ge2\) (đúng)
Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)
Đặt \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2014k\\c=2015k\end{cases}}\)
Ta có: 4(a - b)(b - c) = 4(2013k - 2014k)(2014k - 2015k) = 4(-k)(-k) = 4k2 (1)
(c - a)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) ta có đpcm
Đặt a2013 =b2014 =c2015 =k⇒{
Ta có: 4(a - b)(b - c) = 4(2013k - 2014k)(2014k - 2015k) = 4(-k)(-k) = 4k2 (1)
(c - a)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) ta có đpcm