K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2014

Nếu N là số lẻ thì N + 2015 chia hết cho 2 => tích đó là số chẵn

Nếu N là số chẵn thì N + 2014 chia hết cho 2 => tích đó là số chẵn

 

9 tháng 8 2023

Với số tự nhiên \(n\ge2\) bất kì, gọi \(N=1.2.3...n\left(n+1\right)\)

Xét các số \(N+2,N+3,...,N+n+1\), ta thấy:

\(N+2=1.2.3...n\left(n+1\right)+2⋮2\) nên \(N+2\) là hợp số.

\(N+3=1.2.3...n\left(n+1\right)+3⋮3\) nên \(N+3\) là hợp số.

...

\(N+n+1=1.2.3...n\left(n+1\right)+n+1⋮n+1\) nên \(N+n+1\) là hợp số.

 Vậy \(N+i\) là hợp số với mọi \(2\le i\le n+1\). Có tất cả \(n\) số \(N+i\), suy ra đpcm.

8 tháng 8 2023

Xét dãy các số: (�+1)!+2,(�+1)!+3,...,(�+1)!+�+1.

Có (�+1)!+�⋮�mà (�+1)!+�>�nên số đó là hợp số. 

 =>Vậy dãy số trên gồm toàn hợp số. 

4 tháng 10 2014

Theo mình thì là thế này:

* Xét trường hợp x là số lẻ thì : x+2003 sẽ là số chẵn => (x+2002).(x+2003) là số chẵn

*Xét trường hợp x là số chẵn thì : x+2002 sẽ là số chẵn => (x+2002). (x+2003) là số chẵn

Vậy với mọi số tự nhien x thì tích (x+2002).(x+2003) luôn là số chẵn

1 tháng 1 2022

sao mà tham lam thế

20 tháng 9 2023

a) Xét hiệu : \(n^5-n\)

Đặt : \(A\text{=}n^5-n\)

Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)

\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)

Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .

\(\Rightarrow A⋮2\)

Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)

\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)

\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)

Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.

Do đó : \(A⋮10\)

\(\Rightarrow A\) có chữ số tận cùng là 0.

Suy ra : đpcm.

b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)

Với : n= 3k+1

Thì : \(n^2\text{=}9k^2+6k+1\)

Do đó : \(n^2\) chia 3 dư 1.

Với : n=3k+2

Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)

Do đó : \(n^2\) chia 3 dư 1.

Suy ra : đpcm.

14 tháng 10 2016

n là lẻ

=> n+7 là chẵn => (n+7)(n+4) là chẵn

 n là chẵn thì n+4 là chẵn =>(n+4)(n+7) là chẵn

nhớ

14 tháng 10 2016

+ Với n =2k  ( n chẵn )  => (n+4)(n+7) = (2k +4)(2k+7) = 2(k+2)(2k+7)  chia hết cho 2

+ n = 2k+1 ( n ; lẻ) => (n+4)(n+7) = (2k +4+1)(2k+1 +7) = (2k +5)(2k+8) = 2(2k+5)(k +4) chia hết cho 2

Vậy (n+4)(n+7) là 1 số chẵn

12 tháng 2 2015

* Nếu n lẻ thì n+7 luôn chẵn => (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân với 1 số lẻ thì kết qả là 1 số chẵn )

* Nếu n chẵn thì n+4 là số chẵn => (n+4)(n+7) là số chẵn ( vì 1 số chẵn nhân vs 1 số chẵn ra kết quả là số chẵn )