Chứng tỏ rằng:
abc - cba chia hết cho 99
Giúp mik bài giải nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n = 111.111.111.111.111.111.111.111.111
= 111.111.111.000.000.000.000.000.000 + ...+ 111.111.111.000.000.000 + 111.111.111
= 111.111.111.10^18 + 111.111.111.10^9 + 111.111.111 111.111.111.﴾10^18 + 10^9 + 1 ﴿ Số 111.111.111 chia hết cho 9 vì tổng các chữ số bằng 9
Số 10^18 + 10^9 + 1 chia hết cho 3 vì tổng này là một số có tổng các chữ số bằng 3
Vì 27 chia hết cho 3; 9 nên kết quả trên cũng là chia hết cho 27
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
đề của bạn hơi có vấn đề.Nếu n=5 thì n+2=7,n-2=3.
7 không chia hết cho 3
bài này giải zậy hã
Ta có biểu thức sau có số hạng là :
( 999 - 100 ) + 1 + 900 ( số hạng )
A = ( 100 + 999 ) . 900 : 2 = 494550
\(494550chia\)\(het\)\(cho2\)
\(494550chia\)\(het\)\(cho5\)
a) \(A=3+3^2+..+3^{60}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+...+3^{59}\cdot\left(1+3\right)\)
\(A=4\cdot\left(3+3^3+...+3^{59}\right)\)
Vậy A chia hết cho 4
b) \(A=3+3^2+3^3+...+3^{60}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\cdot\left(1+3+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(A=13\cdot\left(3+..+3^{58}\right)\)
Vậy A chia hết cho 13
mik chỉ làm được 1 bài thôi nha
11 \(⋮\) (n+1)
=> n+1 \(\varepsilon\)Ư (11)={1, -1, 11, -11}
Ta có bảng sau:
n+1 | 1 | -1 | 11 | -11 |
n | 0 | -2 | 10 | -12 |
Vì n\(\varepsilon\)N nên n={0, 10}
k nha
Câu 1 nè:
Nếu n là số lẻ thì n + 3 chia hết cho 2 -----> bt chia hết cho 2
Nếu n là số chẵn thì n + 4 chia hết cho 2 -----> bt chia hết cho 2
-----> bt chia hết cho 2 với n thuộc N* (đpcm)
Đúng thì k, sai thì sửa, k k thì kb nhé
a)aaaaa=a*111111=a*15873*7(chia hết cho 7)
b)abcabc=abc*1001=abc*91*11(chia hết cho 11)
c)aaa=a*111=a*3*37(chia hết cho 37)
d)ab+ab=10a+b+10a+b=20a+b(không có dấu hiệu nào chia hết cho 11, chứng tỏ sai đề!)
Ta có: abc - cba = 100a+10b+c-100c-10b-a
= (100a-a)+(10b-10b)-(100c-c)
= 99a - 99c
= 99(a-c) chia hết cho 99
abc - cba = ( 100a + 10b + c ) - ( 100c + 10b + a ) = 100a + 10 b + c - 100c - 10b - a = 99 a - 99 b chia hết cho 99 ( dpcm )