K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2024

\(a)\dfrac{1}{2}x+199=127\cdot36+36\cdot73-30\cdot40\\\dfrac{ 1}{2}x+199=36\cdot\left(127+73\right)-30\cdot40\\ \dfrac{1}{2}x+199=36\cdot200-1200\\ \dfrac{1}{2}x+199=7200-1200\\ \dfrac{1}{2}x+199=6000\\ \dfrac{1}{2}x=6000-199\\ \dfrac{1}{2}x=5801\\ x=5801:\dfrac{1}{2}=11602\)

\(b)\dfrac{3}{2}:x+\dfrac{1}{3}=\dfrac{19}{21}\cdot\dfrac{25}{3}-\dfrac{16}{21}\cdot\dfrac{25}{3}+\dfrac{1}{7}\\ \dfrac{3}{2}:x+\dfrac{1}{3}=\dfrac{25}{3}\cdot\left(\dfrac{19}{3}-\dfrac{16}{3}\right)+\dfrac{1}{7}\\ \dfrac{3}{2}:x+\dfrac{1}{3}=\dfrac{25}{3}+\dfrac{1}{7}\\ \dfrac{3}{2}:x=\dfrac{25}{3}-\dfrac{1}{3}+\dfrac{1}{7}\\ \dfrac{3}{2}:x=8+\dfrac{1}{7}\\ \dfrac{3}{2}:x=\dfrac{57}{7}\\ x=\dfrac{3}{2}:\dfrac{57}{7}\\ x=\dfrac{21}{114}\) 

\(c)\left(x-\dfrac{1}{2025}\right):\dfrac{1}{2}=\dfrac{\dfrac{2023}{3}-\dfrac{2023}{5}-\dfrac{2023}{9}}{\dfrac{2025}{6}-\dfrac{2025}{10}-\dfrac{2025}{18}}\\ \left(x-\dfrac{1}{2025}\right):\dfrac{1}{2}=\dfrac{\dfrac{4046}{6}-\dfrac{4046}{10}-\dfrac{4046}{18}}{2025\left(\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{9}\right)}\\ \left(x-\dfrac{1}{2025}\right):\dfrac{1}{2}=\dfrac{4046\left(\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{9}\right)}{2025\left(\dfrac{1}{6}-\dfrac{1}{10}-\dfrac{1}{9}\right)}\\ \left(x-\dfrac{1}{2025}\right):\dfrac{1}{2}=\dfrac{4046}{2025}\\ x-\dfrac{1}{2025}=\dfrac{4046}{2025}\cdot\dfrac{1}{2}\\ x-\dfrac{1}{2025}=\dfrac{2023}{2025}\\ x=\dfrac{2023}{2025}+\dfrac{1}{2025}\\ x=\dfrac{2024}{2025}\)

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Đánh giá được mức đơn giản của thuật toán, từ đó tìm ra được cách giải nhanh nhất.

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Thuật toán là một chuỗi các bước được thiết kế để giải quyết một vấn đề cụ thể. Một trong những yếu tố quan trọng để đánh giá hiệu suất của một thuật toán là độ phức tạp thời gian, tức là thời gian mà thuật toán mất để thực thi dựa trên kích thước đầu vào của vấn đề. Phân loại thuật toán dựa trên độ phức tạp thời gian là một phương pháp được sử dụng phổ biến để đánh giá và so sánh hiệu suất của các thuật toán khác nhau. Dưới đây là một số phân loại chính dựa trên độ phức tạp thời gian của thuật toán:

-O(1) (độ phức tạp thời gian hằng số): Đây là loại thuật toán có thời gian thực thi không thay đổi theo kích thước đầu vào. Thời gian thực thi của thuật toán này là cố định, vì vậy độ phức tạp thời gian là hằng số. Ví dụ: Truy cập vào phần tử trong mảng có kích thước cố định.

-O(log n) (độ phức tạp thời gian logarithmic): Đây là loại thuật toán có thời gian thực thi tăng theo logarit của kích thước đầu vào. Thuật toán này thường được sử dụng trong các bài toán tìm kiếm nhị phân, các thuật toán chia để trị, hoặc các thuật toán sắp xếp hiệu quả như QuickSort hoặc MergeSort.

-O(n) (độ phức tạp thời gian tuyến tính): Đây là loại thuật toán có thời gian thực thi tăng tỷ lệ trực tiếp với kích thước đầu vào. Ví dụ: Duyệt qua từng phần tử trong mảng một lần.

-O(n2) (độ phức tạp thời gian bậc hai): Đây là loại thuật toán có thời gian thực thi tăng theo bình phương của kích thước đầu vào. Ví dụ: Thuật toán sắp xếp Bubble Sort, các thuật toán tìm kiếm không hiệu quả như Linear Search trong một mảng lồng nhau.

-O(nk) (độ phức tạp thời gian bậc k): Đây là loại thuật toán có thời gian thực thi tăng theo lũy thừa của kích thước đầu

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

Số lần so sánh giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần so sánh giữa các phần tử là cố định, không phụ thuộc vào dữ liệu đầu vào. Cụ thể, số lần so sánh trong thuật toán sắp xếp chọn là \(\dfrac{n\left(n-1\right)}{2}\), với n là số phần tử trong mảng hoặc danh sách.

Số lần hoán đổi giữa các phần tử: Trong thuật toán sắp xếp chọn, số lần hoán đổi giữa các phần tử có thể đạt đến tối đa n-1 lần, với n là số phần tử trong mảng hoặc danh sách.

Vậy độ phức tạp thời gian của thuật toán sắp xếp chọn là O(n2), hay \(\dfrac{n\left(n-1\right)}{2}\) lần so sánh và tối đa n-1 lần hoán đổi giữa các phần tử.

20 tháng 12 2021

tham khảo 

/Em không đồng ý với ý kiến của Mai.Vì như vậy sẽ là gian lận trong học tập sẽ không giúp gì được cho mik mà làm mik ngày càng ỷ lại,không tốt cho tương lai của bản thân mik.

20 tháng 12 2021

Em không đồng ý với ý kiến của Mai,vì Mai xui Hoa không cần suy nghĩ mà chỉ cần chép trong vở bài tập toán,nếu Lan chép sẽ không hiệu  quả trong học tập.

29 tháng 12 2020

Ý tưởng: Sau khi nhập dãy xong rồi chúng ta sẽ xét từng phần tử trong dãy nếu có phần tử nào chia 10 dư 0 hoặc 5 thì tăng dem lên, và dem chính là két quả của đề bài

7 tháng 1 2022

A

1 tháng 2 2021

B

1 tháng 2 2021

C

6 tháng 10 2023

\(715-1288:x-469+1127:x=295\) 

\(=>\left(715-469\right)-\left(1288-1127\right):x=295\)

\(=>246-161:x=295\)

\(=>161:x=-49\) (vô lí) 

Đề bài sai.

 

7 tháng 10 2023

\(161:x=-49\)

\(\Rightarrow x=-\dfrac{161}{49}\)

Để không sai nhé vẫn tính được