giải phương trình theo tham số m: \(\sqrt{x^2-2x+2}=\frac{1+\sqrt{4m^2-4m-7}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(\text{Δ}=\left(2m+3\right)^2-4\left(4m+2\right)\)
\(=4m^2+12m+9-16m-8\)
\(=4m^2-4m+1=\left(2m-1\right)^2>=0\)
Do đó: Phương trình luôn có hai nghiệm
Theo đề, ta có:
\(\left\{{}\begin{matrix}2x_1-5x_2=6\\x_1+x_2=2m+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1-5x_2=6\\2x_1+2x_2=4m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-7x_2=-4m\\2x_1=5x_2+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\2x_1=\dfrac{20}{7}m+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{4}{7}m\\x_1=\dfrac{10}{7}m+3\end{matrix}\right.\)
Theo đề, ta có: \(x_1x_2=4m+2\)
\(\Rightarrow4m+2=\dfrac{40}{49}m^2+\dfrac{12}{7}m\)
\(\Leftrightarrow m^2\cdot\dfrac{40}{49}-\dfrac{16}{7}m-2=0\)
\(\Leftrightarrow40m^2-112m-98=0\)
\(\Leftrightarrow40m^2-140m+28m-98=0\)
=>\(20m\left(2m-7\right)+14\left(2m-7\right)=0\)
=>(2m-7)(20m+14)=0
=>m=7/2 hoặc m=-7/10
Ta có: \(\Delta=\left[-\left(m+3\right)\right]^2-4\left(4m-4\right)=m^2+6m+9-16m+16=\left(m-5\right)^2\ge0\)
=> pt luôn có 2 nghiệm x1, x2
=> \(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{m+3-m+5}{2}=4\)
\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{m+3+m-5}{2}=m-1\)
Theo bài ra, ta có: \(\sqrt{x_1}+\sqrt{x_2}+x_1x_2=20\)
ĐK: \(x_1\ge0\); \(x_2\ge0\) <=> 4 \(\ge\) 0 và m - 1 \(\ge\)0 <=> m \(\ge\)1
<=> \(\sqrt{4}+\sqrt{m-1}+4\left(m-1\right)=20\)
<=> \(\sqrt{m-1}=22-4m\left(m\le\frac{11}{2}\right)\)
<=> \(m-1=16m^2-176m+484\)
<=> \(16m^2-177m+485=0\)
<=> \(16m^2-80m-97m+485=0\)
<=> \(\left(m-5\right)\left(16m-97\right)=0\)
<=> \(\orbr{\begin{cases}m=5\left(tm\right)\\m=\frac{97}{16}\left(ktm\right)\end{cases}}\)
Vậy ...
ĐK: \(x^2-2x+2=\left(x-1\right)^2+1\ge0\text{ (đúng với mọi }x\in R\text{ )};\text{ }4m^2-4m-7\ge0\)
Ta có: \(VT=\sqrt{\left(x-1\right)^2+1}\ge1\)
+Nếu \(\frac{1+\sqrt{4m^2-4m-7}}{2}<1\Leftrightarrow\sqrt{4m^2-4m-7}<1\) thì \(VT\ge0>VP\) => pt vô nghiệm.
+Xét \(\frac{1+\sqrt{4m^2-4m-7}}{2}\ge1\Leftrightarrow\sqrt{4m^2-4m-7}\ge1\Leftrightarrow4m^2-4m-7\ge1\)
\(\Leftrightarrow4\left(m+1\right)\left(m-2\right)\ge0\)\(\Leftrightarrow m\le-1\text{ hoặc }m\ge2\)
\(pt\Leftrightarrow\left(x-1\right)^2=\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1\)
\(\Leftrightarrow x=\sqrt{\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1}+1\)hoặc \(x=-\sqrt{\left(\frac{1+\sqrt{4m^2-4m-7}}{2}\right)^2-1}+1\)
Kết luận: ............................................