Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu
Mà -2017 là âm
=> 2m - 8 cũng là âm
=> 2m < 8
=> m < 4
Vậy với m < 4 thì x là số hữa tỉ dương
b) Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác dấu
Mà -2017 là âm
=> 2m - 8 là dương
=> 2m > 8
=> m > 4
Vậy với m > 4 thì x là số hữa tỉ âm
c) Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )
=> 2m - 8 = 0
=> 2m = 8
=> m = 4
Vậy với m = 4 thì x không âm không dương
Bài 2:
Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)
\(\Rightarrow2x+6-4-6⋮x+3\)
\(\Rightarrow\left(2x+6\right)-10⋮x+3\)
\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))
\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)
Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên
Mình làm mẫu 2 bài đầu tiên thôi nhé!! 😃
a, Để 3/(x - 1) dương thì 3 và x - 1 cùng dấu
Mà 3 > 0 => x - 1 > 0 => x > 1
b, Để 5/(x - 2) âm thì 5 và x - 2 trái dấu
Mà 5 > 0 => x - 2 < 0 => x < 2
*tk giúp mình nhé!! 😊*
a, \(\frac{3}{x-1}\) là số dương => \(\frac{3}{x-1}>0\) => x - 1 cùng dấu với 3
Vì x - 1 là mẫu số \(\Rightarrow x-1\ne0\) \(\Rightarrow x-1>0\Rightarrow x>0+1\Rightarrow x>1\)
b, \(\frac{5}{x-2}\) là số âm => \(\frac{5}{x-2}< 0\) => x - 2 khác dấu với 5
Vì x - 2 là mẫu số \(\Rightarrow x-2\ne0\Rightarrow x-2< 0\Rightarrow x< 0+2\Rightarrow x< 2\)
c, \(\frac{x-3}{x-5}\) là số dương => \(\frac{x-3}{x-5}>0\) => x - 3 và x - 5 cùng dấu
\(TH1:\hept{\begin{cases}x-3>0\\x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x>0+3\\x>0+5\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>5\end{cases}\Rightarrow}}x>5}\)
\(TH2:\hept{\begin{cases}x-3< 0\\x-5< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0+3\\x< 0+5\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< 5\end{cases}\Rightarrow}x< 3}\)
d, \(\frac{x+7}{x+10}\) là số âm => \(\frac{x+7}{x+10}< 0\) => x + 7 và x + 10 khác dấu
\(TH1:\hept{\begin{cases}x+7>0\\x+10< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>0-7\\x< 0-10\end{cases}\Rightarrow}\frac{x>-7}{x< -10}\) ( loại )
\(TH2:\hept{\begin{cases}x+7< 0\\x+10>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0-7\\x>0-10\end{cases}\Rightarrow}\hept{\begin{cases}x< -7\\x>-10\end{cases}\Rightarrow}-10< x< -7}\)
Mình nghĩ như thế này thôi nhé
x+2/x-6 = x-6+8/x-6 = 1 + 8/x-6
để x+2/x-6 là số hữu tỉ dương => x-6 thuộc Ư(8)={ -1 ; 1 ; 2 ; -2 ; 4 ; -4 ; 8 ; -8 }
nếu x -6 = 1 => x = 7 ( TM )
Nếu x - 6 = -1 => x= 8 ( tm )
Nếu x - 6 = 2 => x = 8 ( tm )
Nếu x -6 = -2 => x = 4 ( tm )
Nếu x - 6 = 4 => x = 10 ( tm )
Nếu x -6 = -4 => x = 2 ( tm)
Nếu x -6 = 8 => x = 14 ( tm )
Nếu x -6=-8 => x = -2 ( ktm )
Vậy x € { 7 ; 5 ; £ ; 4 ; 2 ; 10 ; 14 } thì x+2 / x-6 là số hữu tỉ dương
b/ câu này bạn cũng làm tương tự như vậy nhưng x phải là số âm thì mới thỏa mãn .
a)\(\frac{x+2}{x-6}\)là số hữu tỉ dương\(\Leftrightarrow x+2\)và \(x-6\)cùng dấu.
Mà x + 2 > x - 6 nên \(\hept{\begin{cases}x+2< 0\\x-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -2\\x>6\end{cases}}\)
Vậy x < - 2 và x > 6 thì \(\frac{x+2}{x-6}\)là số hữu tỉ dương
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)
\(x=\dfrac{5}{a-1}< 0\Leftrightarrow a-1< 0\left(5>0;a-1\ne0\right)\Leftrightarrow a< 1\)
a)
Gọi x là số cần tìm, ta có:
\(x+2>0\left(x>0\right)\)
\(\Rightarrow x-4< 0\)
\(\Rightarrow x< 4\)
\(x=\left\{1;2;3\right\}\)
b)
Gọi x là số cần tìm, khi đó:
\(x-2< 0\left(x< 0\right)\)
\(x+4>0\left(\forall x>-4\right)\)
\(\Rightarrow x=\left(-3;-2;-1\right)\)
a) Để x là số hữu tỉ dương thì:
\(\dfrac{13-n}{-5}>0\)
Mà: `-5<0`
`=>13-n<0`
`=>n>13`
b) Để x là số hữu tỉ âm thì:
`(13-n)/-5<0`
Mà: `-5<0`
`=>13-n>0`
`=> n<13`
c) Đê x không phải số hữu tỉ âm cũng không phải số hữu tỉ dương thì:
\(x=0=>\dfrac{13-n}{-5}=0\\ =>13-n=0\\ =>n=13\)
Bài 2:
Để \(\dfrac{m+2}{5};\dfrac{m-5}{-6}\) đều là các số dương thì
\(\left\{{}\begin{matrix}\dfrac{m+2}{5}>0\\\dfrac{m-5}{-6}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m+2>0\\m-5< 0\end{matrix}\right.\)
=>-2<m<5
mà m nguyên
nên \(m\in\left\{-1;0;1;2;3;4\right\}\)
Bài 3:
Để \(\dfrac{1-m}{-13};\dfrac{5-m}{3}\) đều là các số âm thì
\(\left\{{}\begin{matrix}\dfrac{1-m}{-13}< 0\\\dfrac{5-m}{3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-1}{13}< 0\\\dfrac{m-5}{3}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m-1< 0\\m-5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>5\end{matrix}\right.\)
=>\(m\in\varnothing\)