Bài 6: Cho tam giác ABC vuông tại A .Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
a) Chứng minh tam giác ABD bằng tam giác ABC , suy ra điểm B cách đều 2 đầu đoạn thẳng CD.
b) Vẽ AH vuông góc với BD tại H, vẽ AK vuông góc với BC tại K. Chứng minh tam giác BHK cân.
c) Chứng minh HK // DC.
a) Xét ΔABD vuông tại A và ΔABC vuông tại A có
BA chung
AD=AC(gt)
Do đó: ΔABD=ΔABC(hai cạnh góc vuông)
Suy ra: BD=BC(hai cạnh tương ứng)
hay B cách đều hai đầu đoạn thẳng CD(Đpcm)
b) Ta có: ΔABD=ΔABC(cmt)
nên \(\widehat{DBA}=\widehat{CBA}\)(hai góc tương ứng)
hay \(\widehat{HBA}=\widehat{KBA}\)
Xét ΔBHA vuông tại H và ΔBKA vuông tại K có
AB chung
\(\widehat{HBA}=\widehat{KBA}\)(cmt)
Do đó: ΔBHA=ΔBKA(cạnh huyền-góc nhọn)
Suy ra: BH=BK(hai cạnh tương ứng)
Xét ΔBHK có BH=BK(cmt)
nên ΔBHK cân tại B(Định nghĩa tam giác cân)
c) Ta có: BH=BK(cmt)
nên B nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AH=AK(ΔAHB=ΔAKB)
nên A nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: BD=BC(cmt)
nên B nằm trên đường trung trực của DC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: AD=AC(gt)
nên A nằm trên đường trung trực của DC(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (1) và (2) suy ra BA là đường trung trực của HK
hay BA\(\perp\)HK(5)
Từ (3) và (4) suy ra BA là đường trung trực của DC
hay BA\(\perp\)DC(6)
Từ (5) và (6) suy ra HK//DC(Đpcm)