Tìm x biết:
(2x-5)2 - x2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x - 2)(x2 + 2x + 4) + 2(x2 - 4) - 5(x - 2) = 0
(x - 2)(x + 2)2 + 2(x - 2)(x+2) - 5(x - 2) = 0
(x - 2)[(x+2)2 + 2(x+2) - 5]= 0
(x - 2)[(x + 2)2 + 2(x + 2) + 1 - 6] = 0
( x - 2)[(x + 2 + 1)2 - 6] = 0
(x - 2)[(x + 3)2 - 6] = 0
(x - 2)(x + 3 - \(\sqrt{6}\))(x + 3 + \(\sqrt{6}\)) = 0
TH1. x - 2 = 0 <=> x = 2
TH2. x + 3 - \(\sqrt{6}\) = 0 <=> x = \(\sqrt{6}-3\)
TH3. x + 3 + \(\sqrt{6}\) = 0 <=> x = \(-\sqrt{6}-3\)
S = {2; \(\sqrt{6}-3\); \(-\sqrt{6}-3\)}
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
`#3107.101107`
`1/2x + 4/5 = 2x - 8/5`
`=> 1/2x - 2x = -4/5 - 8/5`
`=> -3/2x = -12/5`
`=> x = -12/5 \div (-3/2)`
`=> x = 8/5`
Vậy, `x = 8/5`
_____
`\sqrt{x} = 5`
`=> x = 5^2`
`=> x = 25`
Vậy, `x = 25`
___
`x^2 = 3`
`=> x^2 = (+-\sqrt{3})^2`
`=> x = +- \sqrt{3}`
Vậy, `x \in {-\sqrt{3}; \sqrt{3}}.`
a)4x2-9=0
⇔ (2x-3)(2x+3)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b)(x+5)2-(x-1)2=0
⇔ (x+5-x+1)(x+5+x-1)=0
⇔ 12(x+2)=0
⇔ x=-2
c)x2-6x-7=0
⇔ x2-7x+x-7=0
⇔ x(x-7)+(x-7)=0
⇔ (x-7)(x+1)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
d)(x+1)2-(2x-1)2=0
⇔ (x+1-2x+1)(x+1+2x-1)=0
⇔3x(2-x)=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a, 4x2 - 9 = 0
<=> 4x2 = 9
<=> x2 = \(\dfrac{9}{4}\) => x = \(\sqrt{\dfrac{9}{4}}\)
b, (x + 5 )2 - ( x - 1 )2 = 0
<=> ( x+5-x+1 )(x+5+x-1) = 0
<=> 6(2x+4) = 0
<=> 12x+24=0
<=> 12x = -24
<=> x = -2
c, x2-6x-7=0
<=> x2+x-7x-7=0
<=> x(x+1)-7(x+1)=0
<=> (x-7)(x+1)=0
=> x+7=0 hoặc x+1=0
+ x-7=0 => x=7
+ x+1=0 => x=-1
d, \(\left(x+1\right)^2-\left(2x-1\right)^2=0\)
<=> \(\left(x+1-2x+1\right)\left(x+1+2x-1\right)=0\)
<=> (-x+2).3x=0
=> x=0 hoặc (-x+2).3=0
+ (-x+2).3=0 => -3x+6=0 => x=-2
2 x + 5 - x 2 - 5 x = 0
⇔ 2(x + 5) – ( x 2 + 5x) = 0
⇔ 2(x + 5) – x(x + 5) = 0
⇔ (2 – x)(x + 5) = 0
⇔ 2 – x = 0 hoặc x + 5 = 0
• 2 – x = 0 ⇔ x = 2
• x + 5 = 0 ⇔ x = -5
Vậy x = 2 hoặc x = -5.
$(2x-5)^2-x^2=0$
$\Leftrightarrow (2x-5-x)(2x-5+x)=0$
$\Leftrightarrow (x-5)(3x-5)=0$
$\Leftrightarrow \left[\begin{array}{} x-5=0\\ 3x-5=0 \end{array} \right.$
$\Leftrightarrow \left[\begin{array}{} x=5\\x=\frac53 \end{array} \right.$