K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2017

\(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xyz+xz+z}+\frac{xyz}{xyz^2+xyz+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))

\(=\frac{xz}{xz+z+1}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)(do \(xyz=1\))

\(=\frac{xz+z+1}{xz+z+1}=1\)

28 tháng 10 2016

Từ giả thiết ta có ngay \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left[\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right]=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

Suy ra x + y = 0 hoặc y + z = 0 hoặc z + x = 0

Tới đây bạn tự làm nhé :)

x=by+cz;y=ax+cz;z=ax+by

=>x+y+z=2(ax+by+cz)

\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)

\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)

\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)

\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)

\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)

\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

thiếu đề

5 tháng 2 2017

Xét x + y + z = 0

\(\Rightarrow1\hept{\begin{cases}x+y=-z\\y+z=-x\\z+x=-y\end{cases}}\)

Thế vào dãy tỷ số phía dưới thì được

- 2 = - 2 = - 2 (đúng)

Thế ngược lên P ta được P = - 1

Xét x + y + z \(\ne\)0

\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\hept{\begin{cases}x+y=2z\\y+z=2x\\z+x=2y\end{cases}}\)

Thế lên P ta được

\(P=\frac{2x.2y.2z}{x.y.z}=8\) 

5 tháng 2 2017

Ủa không phải cái phân thức thứ 3 là (- x + y + z)/x sao???

19 tháng 3 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

Do đó : 

\(\frac{y+z-x}{x}=1\)\(\Rightarrow\)\(2x=y+z\)

\(\frac{z+x-y}{y}=1\)\(\Rightarrow\)\(2y=x+z\)

\(\frac{x+y-z}{z}=1\)\(\Rightarrow\)\(2z=x+y\)

Suy ra : 

\(P=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{x}.\frac{y+z}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(P=8\)

Đề hơi sai 

26 tháng 12 2017

\(\left(\frac{x}{y}-1\right).\left(\frac{y}{z}+1\right).\left(\frac{z}{x}-1\right)\)=\(\left(\frac{x-y}{y}\right).\left(\frac{y+z}{z}\right).\left(\frac{z-x}{x}\right)\)

ta có:x-y-z=0

     \(\rightarrow\)x-y=z

     \(\rightarrow\)y+z=x

     \(\rightarrow\)z-x=-y

thay các số trên vào bt,ta đc:

\(\frac{z}{y}.\frac{x}{z}.\frac{-y}{x}\)= -1