Tính tổng
S=1×4+2×5+3×6+4×7+................+n×(n+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S1 = 1 + (-3) + 5 + (-7) + .... + 17
= (1 - 3) + (5 - 7) + (9 - 11)+ (13 - 15) + 17
= -2 + -2 + -2 + -2 + 17
= -2 x 4 + 17
= -8 + 17
S1 = 9
S2 = (4 - 2) + (8 - 6) + (12 - 10) + (16 - 14) + -18
= 2 x 4 - 18
S2 = -10
S1 + S2 = 9 - 10 = -1
S1=1+(-3)+5+(-7)+...+17.
S1=-2+(-2)+....+(-2).(9 số -2).
S2=-2+4+(-6)+....+(-18)
S2=-2+(-2)+...+(-2).(9 số -2).
=> (-2).(9+9)=-36.
Câu 2:
#include <bits/stdc++.h>
using namespace std;
double p1,p2;
int i,n;
int main()
{
cin>>n;
p1=1;
p2=1;
for (i=1; i<=n; i++)
{
if (i%2==0) p2=p2*(i*1.0);
else p1=p1*(i*1.0);
}
cout<<fixed<<setprecision(2)<<p1<<endl;
cout<<fixed<<setprecision(2)<<p2;
return 0;
}
a) 1 + 2 + 3 + ... + n
= \(\frac{\left(n+1\right).n}{2}\)
b) 1 + 3 + 5 + 7 + ... + (2n + 1)
= \(\left(2n+1+1\right).\left(\frac{2n+1-1}{2}+1\right):2\)
\(=\left(2n+2\right).\left(\frac{2n}{2}+1\right):2\)
\(=2.\left(n+1\right).\left(n+1\right):2\)
\(=\left(n+1\right)^2\)
c) 2 + 4 + 6 + 8 + ... + 2.n
= 2.(1 + 2 + 3 + 4 + ... + n)
\(=2.\frac{\left(n+1\right).n}{2}\)
= (n + 1).n
Các bn giúp mình đi
fgbgf hg