Cho a,b,c là các số thực dương có tổng bằng 1. Chứng minh rằng
(a + \(\frac{1}{b}\)) (b + \(\frac{1}{c}\)) (c + \(\frac{1}{a}\)) >= (\(\frac{10}{3}\))3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bđt \(\Leftrightarrow\)\(\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)\ge\left(\frac{10}{3}\right)^3abc\) (*)
đặt \(\left(\sqrt{ab};\sqrt{bc};\sqrt{ca}\right)=\left(x;y;z\right)\)\(\Rightarrow\)\(xyz\le\frac{1}{27}\)
(*) \(\Leftrightarrow\)\(\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\ge\left(\frac{10}{3}\right)^3xyz\)
\(VT\ge\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\)
Có \(xy+1\ge10\sqrt[10]{\frac{xy}{9^9}}\)
Tương tự với \(yz+1\)\(;\)\(zx+1\)\(\Rightarrow\)\(VT\ge10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\)
Ta cần CM \(10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\ge\frac{10^3}{3^3}xyz\) đúng với \(xyz\le\frac{1}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Đặt \(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)\)
Vì a+b+c=1 nên
\(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\)
Từ BĐt Cosi cho 3 số dương ta có:
\(\frac{1}{3}=\frac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)
đặt x=abc thì \(0< x\le\frac{1}{27}\)
do đó: \(x+\frac{1}{x}-27-\frac{1}{27}=\frac{\left(27-x\right)\left(1-27x\right)}{27x}\ge0\)
=> \(x+\frac{1}{x}=abc+\frac{1}{abc}\ge27+\frac{1}{27}=\frac{730}{27}\)
Mặt khác: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Nên \(P\ge\frac{730}{27}+10=\frac{1000}{27}=\left(\frac{10}{3}\right)^3\)
Dấu "=" xảy ra khi a=b=c\(=\frac{1}{3}\)
ta có a+bc=a(a+b+c)+ab=(a+b)(a+c)
tương tự b+ca=(b+c)(a+b)
c+ab=(a+c)(b+c)
ad bđt cô si cho 3 số dương ta có
a^3/(a+b)(a+c)+a+b/8+a+c/8 >=3a/4
tương tự bạn lm tiếp nhé
1. Đề thiếu
2. BĐT cần chứng minh tương đương:
\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
Ta có:
\(a^4+b^4+c^4\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)^2\ge\dfrac{1}{3}\left(ab+bc+ca\right)^2\ge\dfrac{1}{3}.3abc\left(a+b+c\right)\) (đpcm)
3.
Ta có:
\(\left(a^6+b^6+1\right)\left(1+1+1\right)\ge\left(a^3+b^3+1\right)^2\)
\(\Rightarrow VT\ge\dfrac{1}{\sqrt{3}}\left(a^3+b^3+1+b^3+c^3+1+c^3+a^3+1\right)\)
\(VT\ge\sqrt{3}+\dfrac{2}{\sqrt{3}}\left(a^3+b^3+c^3\right)\)
Lại có:
\(a^3+b^3+1\ge3ab\) ; \(b^3+c^3+1\ge3bc\) ; \(c^3+a^3+1\ge3ca\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge3\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow VT\ge\sqrt{3}+\dfrac{6}{\sqrt{3}}=3\sqrt{3}\)
4.
Ta có:
\(a^3+1+1\ge3a\) ; \(b^3+1+1\ge3b\) ; \(c^3+1+1\ge3c\)
\(\Rightarrow a^3+b^3+c^3+6\ge3\left(a+b+c\right)=9\)
\(\Rightarrow a^3+b^3+c^3\ge3\)
5.
Ta có:
\(\dfrac{a}{b}+\dfrac{b}{c}\ge2\sqrt{\dfrac{a}{c}}\) ; \(\dfrac{a}{b}+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{b}}\) ; \(\dfrac{b}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{b}{a}}\)
\(\Rightarrow\sqrt{\dfrac{b}{a}}+\sqrt{\dfrac{c}{b}}+\sqrt{\dfrac{a}{c}}\le\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=1\)
Theo giả thiết ta có: các bất đẳng thức trên tương đương với bất đẳng thức cần chứng minh
\(\frac{a}{4-c}+\frac{b}{4-a}+\frac{c}{4-b}\le1\)
\(\Rightarrow a\left(4-a\right)\left(4-b\right)+b\left(4-b\right)\left(4-c\right)\)\(+c\left(4-c\right)\left(4-a\right)\le\left(4-a\right)\left(4-b\right)\)\(\left(4-c\right)\)
\(\Rightarrow a^2b+b^2c+c^2a+abc\le4\)
Bất đẳng thức trên mang tính hoán vị giữa các bất đẳng thức nên không mất tính tổng quát ta giả swr c nằm giwuax a và b khi đó ta có:
\(a\left(a-c\right)\left(b-c\right)\le0\)
Thực hiện phép khai triển ta được: \(a^2b+c^2a\le a^2c+abc\)rồi cộng thêm \(\left(b^2c+abc\right)\)vào 2 vế ta được:
\(a^2b+b^2c+c^2a+abc\)\(\le a^2c+b^2c+2abc=c\left(a+b\right)^2\)
Áp dụng Bất Đẳng Thức AM-GM ta có:
\(c\left(a+b\right)^2=\frac{1}{2}2c\left(a+b\right)\left(a+b\right)\)\(\le\frac{\left(2c+a+b+a+b\right)^3}{2.27}=4\)nên Bất Đẳng Thức đã được chứng minh
Vậy \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)( đpcm )
Theo bất đẳng thức Cô-sy ta được:
\(a+b+c\ge3^3\sqrt{abc}\)(1)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\)(2)
Nhân (1) (2) vế heo vế ta được
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)
biến đổi cách này dễ hiểu hơn nề:))
vì a+b+c=1 nên
\(\frac{1}{a}\)=\(\frac{a+b+c}{a}\)= 1+ \(\frac{b}{a}\)+\(\frac{c}{a}\)
\(\frac{1}{b}\)=\(\frac{a+b+c}{b}\)= 1+ \(\frac{a}{b}\)+\(\frac{c}{b}\)
\(\frac{1}{c}\)=\(\frac{a+b+c}{c}\)= 1+ \(\frac{a}{c}\)+\(\frac{b}{c}\)
ta có \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)= 1+1+1+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{a}{c}\)+\(\frac{c}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))
ta lại có \(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\)2 \(\Leftrightarrow\)\(\frac{a^2+b^2}{ab}\)\(\ge\)2\(\Leftrightarrow\)\(a^2\)+\(b^2\)\(\ge\)2ab \(\Leftrightarrow\)(a-b)^2\(\ge\)0 luôn đúng
tương tự ta có a/c+c/a >= 2 và b/c+c/b >= 2
vậy 1/a+1/b+1/c>=9
Lời giải:
Áp dụng BĐT AM-GM:
\(\text{VT}=\sum \frac{a+1}{b^2+1}=\sum [(a+1)-\frac{b^2(a+1)}{b^2+1}]=\sum (a+1)-\sum \frac{b^2(a+1)}{b^2+1}\)
\(=6-\sum \frac{b^2(a+1)}{b^2+1}\geq 6-\sum \frac{b^2(a+1)}{2b}=6-\sum \frac{ab+b}{2}\)
\(=6-\frac{\sum ab+3}{2}\geq 6-\frac{\frac{1}{3}(a+b+c)^2+3}{2}=6-\frac{3+3}{2}=3\)
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(\frac{1}{a}=\frac{a+b+c}{a}=1+\frac{b}{a}+\frac{c}{a}\)
\(\frac{1}{b}=\frac{a+b+c}{b}=1+\frac{a}{b}+\frac{c}{b}\)
\(\frac{1}{c}=\frac{a+b+c}{c}=1+\frac{a}{c}+\frac{b}{c}\)
Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2=9\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}}\Rightarrow a=b=c=\frac{1}{3}\)
Áp dụng BĐT AM-GM (Cô si) cho hai số dương,ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}=9^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\\a+b+c=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:
\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)
Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:
\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)
Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)
Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
Tuy nhiên để đến khi \(a=b=c=1\) thì:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)
Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)
Chứng minh sẽ hoàn tất nếu ta chỉ được:
\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)
Vậy theo bất đẳng thức Cauchy ta được:
\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)
\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
Khi đó ta được:
\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)
Vậy ta cần chỉ ra rằng:
\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)
Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.
Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)