tìm chữ số tận cùng của tính : \(^{49^6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
Lê Thị Như Ý09/12/2014 lúc 21:06 Trả lời 5 Đánh dấu
1, Chữ số tận cùng của 22009 là ?
2, Chữ số tận cùng của 71993 là ?
3, Chữ số tận cùng của 21 + 22 + ... + 2100 là ?
4, Chữ số tận cùng của 20092008 là ?
5, Chữ số tận cùng của 171000 là?
6, Chữ số tận cùng của 2.4.6. ... .48 - 1.3.5. ... .49 là ?
Ta có:L
4931 = 4930 . 49 = (492)15 . 49 = (...1)45 . 49 = (...1) . 49 = (...9)
\(49^{31}=49^{30}.49=\left(49^2\right)^{15}.49\)
=>\(\left(.....1\right)^{45}.49\)
=>\(\left(..1\right).49=\left(...9\right)\)
vì 92 có tận cùng là 1 mà 1 mụ mấy thì cũng lun lun = 1
Mình chắc chắn chữ số tận cùng là 1 bạn ạ!!!!!!!!!!!!!!
Ta nhận thấy một số có tận cùng là \(x\) thì khi lũy thừa lên mũ \(4k+1\left(k\inℕ\right)\) thì số nhận được cũng sẽ có tận cùng là \(x\). (*)
Thật vậy, giả sử \(N=\overline{a_0a_1a_2...a_n}\). Khi đó \(N^{4k+1}=\left(\overline{a_0a_1a_2...a_n}\right)^{4k+1}\) \(=\left(\overline{a_0a_1a_2...a_{n-1}0}+a_n\right)^{4k+1}\) \(=a_n^{4k+1}\) nên ta chỉ cần xét số dư của các số từ 0 đến 9 lũy thừa với số mũ \(4k+1\).
Dễ nhận thấy nếu \(a_n\in\left\{0,1,5,6\right\}\) thì \(a_n^{4k+1}\) sẽ có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{3,7,9\right\}\) thì để ý rằng \(3^4=9^2=81;7^4=2401\) đều có tận cùng là 1 nên hiển nhiên \(a_n^{4k}=\left(a_n^4\right)^k\) có tận cùng là 1. Do đó nếu nhân thêm \(a_n\) thì \(a_n^{4k+1}\) có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{2,4,8\right\}\) thì do \(2^4=16;4^4=256;8^4=4096\) đều có chữ số tận cùng là 6 \(\Rightarrow a_n^{4k}\) có chữ số tận cùng là 6. Khi nhân thêm \(a_n\) vào thì bộ \(\left(a_n;a_n^{4k+1}\right)\) sẽ là \(\left(2;2\right);\left(4;4\right);\left(8;8\right)\).
Vậy (*) đã được chứng minh.
\(\Rightarrow\) S có chữ số tận cùng là \(2+3+4+...+4\) (tới đây bạn chỉ cần đếm xem có bao nhiêu trong mỗi chữ số từ 0 đến 9 xuất hiện trong tổng trên là xong nhé)
\(a_n^{4k}\)
496 = (72)6 = 712 = 74.3 = .......1
Vậy chữ số tận cùng là 1
mình không biết giải nhưng dạy bạn mẹo nha
dùng số cuối của cơ số ( 49) mũ với số mũ đã có của cơ số ( 6)
ta có \(9^6=531441\)
nhận thấy kết thúc bằng số 1
=> \(49^6\)có kết thúc bằng số 1 hay chũ số tận cũng bằng 1
(bạn có thể thử lại với số này bằng cách khác: nhấn máy tính \(49^6=49^5.49=282475249.49\)mà \(9.9=81\)(kết thúc bằng số 1 nên số 495.49 kết thú bằng số 1 => 496 kết thúc bằng số 1)
Chữ số tận cùng 2.4.6....48 là 0 (do chứa 10, 20..trong tích số)
Chữ số tận cùng 1.3.5....49 là 5 ((do chứa 5 trong tích số nên nhân số nào cũng là 5)
=> Chữ số tận cùng 2.4.6....48 - 1.3.5....49 là 5