K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2024

cảm ơn gì vậy bn

 

24 tháng 6 2024

?

13: 

xy(x+y)+yz(y+z)+xz(x+z)+2xyz 

= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz 

= xy(x + y) + yz(y + z + x) + xz(x + z + y) 

= xy(x + y) + z(x + y + z)(y + x) 

= (x + y)(xy + zx + zy + z²) 

= (x + y)[x(y + z) + z(y + z)] 

= (x + y)(y + z)(z + x)

Ta có:\(\frac{x}{xy+x+1}=\frac{y}{yz+y+1}=\frac{z}{xz+x+1}\)=\(\frac{xz}{xyz+xz+z}=\frac{yxz}{xyz^2+yxz+xz}=\frac{z}{xz+z+1}\)

=\(\frac{xz}{1+xz+z}=\frac{xyz}{z+1+xz}=\frac{z}{xz+z+1}\)

=\(\frac{xyz+xz+1}{xyz+xz+1}\)=1

Đề bn ghi sai nha~~

16 tháng 9 2020

Ta có:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\Rightarrow x+y+z=xyz\)

Dễ có một vài phép biến đổi cơ bản và bất đẳng thức AM - GM:\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+x^2yz}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)

\(=\sqrt{\frac{x}{x+z}\cdot\frac{x}{x+y}}\le\frac{\frac{x}{x+z}+\frac{x}{x+y}}{2}\)

Khi đó:\(LHS\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{y}{x+y}+\frac{x}{x+z}+\frac{z}{x+z}+\frac{y}{z+y}+\frac{z}{z+y}\right)=\frac{3}{2}\)

Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)

4 tháng 9 2016

thứ lỗi cho mk , mk không biết làm ; bài này khó quá

4 tháng 9 2016

chuẩn k chỉnh

16 tháng 1 2019

\(\frac{1}{x+xy+1}+\frac{1}{y+yz+1}+\frac{1}{z+zx+1}\)

\(=\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}+\frac{xyz}{xz\left(1+y+yz\right)}\)

\(=\frac{yz}{1+y+yz}+\frac{1}{1+y+yz}+\frac{y}{1+y+yz}\)

\(=\frac{1+y+yz}{1+y+yz}\)

\(=1\)

25 tháng 11 2021

\(=\dfrac{xy\left(z-1\right)-y\left(z-1\right)-x\left(z-1\right)+\left(z-1\right)}{xy\left(z+1\right)+y\left(z+1\right)-x\left(z+1\right)-\left(z+1\right)}\\ =\dfrac{\left(z-1\right)\left(xy-y-x+1\right)}{\left(z+1\right)\left(xy+y-x-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)\left(y-1\right)}{\left(z+1\right)\left(x+1\right)\left(y-1\right)}=\dfrac{\left(z-1\right)\left(x-1\right)}{\left(z+1\right)\left(x+1\right)}\\ =\dfrac{\left(5003-1\right)\left(5001-1\right)}{\left(5003+1\right)\left(5001+1\right)}=\dfrac{5002\cdot5000}{5004\cdot5002}=\dfrac{5000}{5004}=\dfrac{1250}{1251}\)