CMR : f(x) = x6n - x3n +1 không chia hết cho g(x) = x2 + x + 1 ( n ϵ N , n ≠ 0 ) mấy bn giúp vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x^{3n}+y^{3n}\right)\left(x^{3n}-y^{3n}\right)=-x^{6n}-y^{6n}\)
\(\Leftrightarrow x^{6n}-y^{6n}=-x^{6n}-y^{6n}\)
\(\Leftrightarrow n\in\varnothing\)
\(S=1!+2!+3!+...+2023!\)
Ta thấy :
\(1!+2!+3!+4!=1+2+6+24=33\) không chia hết cho \(5\)
\(5!+6!+7!+8!+9!=\overline{.....5}⋮5\)
\(10!+11!+12!+...+2023!=\overline{.....0}⋮5\)
Vậy \(S=1!+2!+3!+...+2023!\) không chia hết cho \(5\)
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha
\(a,A=\left\{0;1;2;3;4\right\}\\ b,B=\left\{-16;-13;-10;-7;-4;-1;2;5;8\right\}\\ c,C=\left\{-9;-8;-7;...;7;8;9\right\}\\ d,x^2-3x+1=0\\ \Delta=9-4=5\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\\ \Leftrightarrow D=\left\{\dfrac{3-\sqrt{5}}{2};\dfrac{3+\sqrt{5}}{2}\right\}\)
\(e,2x^3-5x^2+2x=0\\ \Leftrightarrow x\left(x-2\right)\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\\ \Leftrightarrow E=\left\{0;2\right\}\\ f,F=\left\{0;3;6;9;12;15;18\right\}\)
\(a+1⋮6\Rightarrow a\text{ chia 6 d}5;b+2013⋮6\Rightarrow b\text{ chia 6 }d3\)
\(matkhac:4\equiv4\left(mod6\right)\Rightarrow4.4\equiv4^2\equiv4\left(mod6\right)\Rightarrow4^a\equiv4\left(mod6\right)\Rightarrow a+b+4^a\equiv5+3+4\equiv0\left(mod6\right)\)
svtkvtm em đã học mod rồi ak >> Anh không hiểu cái đấy luôn >> Cô dạy hay tự học đấy >> Nếu tự học thì cho anh xin tài liệu học nữa >>>
Lời giải:
$f(x)=x^{6n}-x^{3n}+1=x^{3n}(x^{3n}-1)+1$
$=x^{3n}[(x^3)^n-1^n]+1$
$=x^{3n}(x^3-1)[(x^3)^{n-1}+(x^3)^{n-2}+...+1]+1$
$=x^{3n}(x^2+x+1)(x-1)[(x^3)^{n-1}+(x^3)^{n-2}+...+1]+1$
$\Rightarrow f(x)$ chia $x^2+x+1$ dư $1$
$\Rightarrow f(x)$ không chia hết cho $g(x)$