K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

\(A=3+2^2+...+2^{99}\)

\(\Rightarrow A=1+2+2^2+...+2^{99}\)

\(\Rightarrow2A=2+2^2+...+2^{100}\)

\(\Rightarrow2A-A=2+2^2+...+2^{100}-1-2-...-2^{99}\)

\(\Rightarrow A=2^{100}-1\)

Thay A = 2100 - 1 vào A + 1 = 4^n , ta có:

\(2^{100}-1+1=4^n\)

\(\Rightarrow2^{100}=2^{2n}\)

\(\Rightarrow2n=100\Rightarrow n=50\)

22 tháng 10 2023

nhanh tích cho nhee

22 tháng 10 2023

tui làm b nha do a không biết làm

A=5+32+33+...+32018

3A=15+33+34+...+32019

3A-A=(15+33+34+...+32019)-(5+32+33+...+32018)

2A=32019+15-(5+32)

2A=32019+15-14

2A=32019+1

2A-1=32019+1-1

2A-1=32019

vậy n = 2019

 

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

17 tháng 7 2016

đăng mà k ai trả lời

17 tháng 7 2016

bạn ra 1 lần nhiều thế này người ta ngại trả lời lắm

b: =>\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+...+\dfrac{2}{n\left(n+1\right)}=\dfrac{200}{101}\)

=>\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{n\left(n+1\right)}=\dfrac{100}{101}\)

=>1-1/2+1/2-1/3+...+1/n-1/n+1=100/101

=>1-1/(n+1)=100/101

=>1/(n+1)=1/101

=>n+1=101

=>n=100

12 tháng 7 2023

câu a đâu bn?