K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2024

\(x^2-x\left(m+2\right)+2m=0\)

De pt co 2 nghiem phan biet khi delta > 0 

\(\Delta=\left(m+2\right)^2-4.2m=m^2+4m+4-8m=m^2-4m+4=\left(m-2\right)^2\)

Ma (m-2)^2 >= 0 voi moi x 

=> m - 2 \(\ne0\Rightarrow m\ne2\)

19 tháng 6 2024

\(x^2-2x-mx+2m=0\)

\(x^2-\left(2+m\right)x+2m=0\)

\(\Delta=\left[-\left(2+m\right)\right]^2-4.1.2m\)

\(=4+4m+m^2-8m\)

\(=m^2-4m+4\)

\(=\left(m-2\right)^2\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\left(m-2\right)^2>0\)

\(m-2\ne0\)

\(m\ne2\)

Vậy \(m\ne2\) thì phương trình đã cho có hai nghiệm phân biệt

23 tháng 7 2021

còn cái nịt

DD
29 tháng 5 2022

\(x^2-mx+2m-4=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-m\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=m\end{matrix}\right.\)

Để phương trình có hai nghiệm phân biệt thì \(m\ne2\).

TH1: \(x_1=2,x_2=m\):

\(x_1^2=5x_2-1\Leftrightarrow4=5m-1\Leftrightarrow m=1\) (thỏa mãn).

TH2: \(x_1=m,x_2=2\):

\(x_1^2=5x_2-1\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\) (thỏa mãn).

12 tháng 4 2023

a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:

\(3^2-m.3+2m-4=0\)

\(\Leftrightarrow9-3m+2m-4=0\)

\(\Leftrightarrow m-5=0\)

\(\Leftrightarrow m=5\)

Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:

\(\Delta=\left(-5\right)^2-4.1.6=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)

Vậy nghiệm còn lại là \(x=2\)

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

25 tháng 8 2021

a, Để pt có 2 nghiệm pb khi \(\Delta>0\)

\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)

b, Để pt trên là pt bậc 2 khi \(m\ne0\)

Để pt vô nghiệm khi \(\Delta< 0\)

\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)

c, Để pt trên là pt bậc 2 khi \(m\ne2\)

Để pt trên có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)