K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

đặt a+b=t => ab=t2-4

2 tháng 10 2019

Ta có: \(a^2+b^2=4\Leftrightarrow2ab=\left(a+b\right)^2-4\)

\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Ta có: \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\Rightarrow M\le\sqrt{2}-1\)

Dấu "="\(\Leftrightarrow a=b=\sqrt{2}\)

Vậy \(M_{max}=\sqrt{2}-1\Leftrightarrow a=b=\sqrt{2}\)

NV
8 tháng 12 2021

Do \(a^2+b^2+c^2=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\\b^{2011}\le b\\c^{2011}\le c\end{matrix}\right.\)

\(\Rightarrow T\le a+b+c-ab-bc-ca=\left(a-1\right)\left(b-1\right)\left(c-1\right)+1-abc\le1-abc\le1\)

\(T_{max}=1\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị

28 tháng 5 2018

Ta có: \(a^2+b^2=4\left(gt\right)\Rightarrow2ab=\left(a+b\right)^2-4\)

\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Mà \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\)

\(\Rightarrow M\le\sqrt{2}-1\)

Dấu \("="\Leftrightarrow a=b=\sqrt{2}\)

Vậy GTLN của \(M=\frac{ab}{a+b+2}=\sqrt{2}-1\)khi \(a=b=\sqrt{2}\)

27 tháng 5 2018

Ta có a2+b2=4

<=> (a+b)2=4+2ab

<=> (a+b)2-4=2ab

<=> (a+b-2)(a+b+2)=2ab

<=> \(\frac{\left(a+b-2\right)\left(a+b+2\right)}{2}=ab\)

Ta có \(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}=\frac{a}{2}+\frac{b}{2}-1\)

Áp dụng BĐT Bunyakovsky cho 2 số a/2 và b/2 ta có

\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right)\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4\left(doa^2+b^2=4\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le2\)

\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\)

Do đó \(M=\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)

Vậy Max M = \(\sqrt{2}-1\)

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$C^2\leq (a+b)[(29a+3b)+(29b+3a)]=32(a+b)^2$

$(a+b)^2\leq (a^2+b^2)(1+1)\leq 4$

$\Rightarrow C^2\leq 32.4$

$\Rightarrow C\leq 8\sqrt{2}$
Vậy $C_{\max}=8\sqrt{2}$. Dấu "=" xảy ra khi $a=b=1$

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$

$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$

Áp dụng BĐT AM-GM:

\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)

\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)

Vậy $Q_{max}=\frac{108}{529}$

Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$

AH
Akai Haruma
Giáo viên
30 tháng 1 2021

Lời giải:

Do $b\leq c; a^2\geq 0$ nên $a^2(b-c)\leq 0$

$\Rightarrow Q\leq b^2(c-b)+c^2(1-c)$

Áp dụng BĐT AM-GM:

\(b^2(c-b)=4.\frac{b}{2}.\frac{b}{2}(c-b)\leq 4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4}{27}c^3\)

\(\Rightarrow Q\leq c^2-\frac{23}{27}c^3=c^2(1-\frac{23}{27}c)=(\frac{54}{23})^2.\frac{23}{54}c.\frac{23}{54}c(1-\frac{23}{27}c)\leq (\frac{54}{23})^2\left(\frac{\frac{23}{54}c+\frac{23}{54}c+1-\frac{23}{27}c}{3}\right)^3=\frac{108}{529}\)

Vậy $Q_{max}=\frac{108}{529}$

Giá trị này đạt tại $(a,b,c)=(0,\frac{12}{23}, \frac{18}{23})$

20 tháng 6 2019

Ta có: \(a^2+b^2=4\Leftrightarrow a^2+2ab+b^2=4+2ab\)

\(\Leftrightarrow\left(a+b\right)^2=4+2ab\Leftrightarrow\left(a+b\right)^2-4=2ab\)

\(\Leftrightarrow\left(a+b+2\right)\left(a+b-2\right)=2ab\Leftrightarrow\frac{\left(a+b+2\right)\left(a+b-2\right)}{2}=ab\)

\(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}\)

\(\Leftrightarrow M=\frac{a}{2}+\frac{b}{2}-1\). Áp dụng bất đẳng thức Bunhiaxoopki cho 2 số a/2 và b/2 ta có:

\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right]\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4=2\)( do \(a^2+b^2=4\))

\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\Leftrightarrow\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)

Vậy GTLN của biểu thức \(M=\frac{ab}{a+b+2}\)là \(\sqrt{2}-1\).

20 tháng 6 2019

Ta có : \(\left(a+b\right)^2=a^2+b^2+2ab=4+2ab\)

\(\Rightarrow a+b=\sqrt{4+2ab}\)

Khi đó \(M=\frac{ab}{\sqrt{4+2ab}+2}\)

Dễ thấy \(\sqrt{4+2ab}>2\)nên có thể nhân liên hợp

\(M=\frac{ab}{\sqrt{4+2ab}+2}=\frac{ab\left(\sqrt{4+2ab}-2\right)}{\left(\sqrt{4+2ab}+2\right)\left(\sqrt{4+2ab}-b\right)}\)

                                            \(=\frac{ab\left(\sqrt{4+2ab}-2\right)}{4+2ab-4}\)

                                            \(=\frac{ab\left(\sqrt{4+2ab}-2\right)}{2ab}\)

                                             \(=\frac{\sqrt{4+2ab}-2}{2}\le\frac{\sqrt{4+a^2+b^2}-2}{2}\)

                                                                                       \(=\frac{\sqrt{4+4}-2}{2}=\sqrt{2}-1\)

Dấu "=" tại \(a=b=\sqrt{2}\)

NV
21 tháng 8 2021

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow ab+bc+ca\le1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c\)

Lại có:

\(\left(a+b+c\right)^2\ge0\) ; \(\forall a;b;c\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow ab+bc+ca\ge-\dfrac{a^2+b^2+c^2}{2}=-\dfrac{1}{2}\)

\(P_{min}=-\dfrac{1}{2}\) khi \(a+b+c=0\)

NV
31 tháng 1 2021

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

22 tháng 6 2021

thế bạn bt hok