K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

Ta có: 

\(\frac{1}{2x+y+z}=\frac{1}{x+x+y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(1\right)\)

Tương tự ta có: 

\(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(\Rightarrow M\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{16}.4.4=1\)

12 tháng 10 2017

Để đơn giản bài toán thì ta xét trường hợp cá biệt. \(x=y\) thì đề ban đầu trở thành.

\(x,z>0,\frac{2}{x}+\frac{1}{z}=4\)

Đễ thấy \(\frac{1}{z}< 4\)

\(\Leftrightarrow z>0,25\)

Với \(z\) càng gần bằng 0,25 thì \(\frac{1}{z}\)càng gần với 4

\(\Rightarrow\frac{2}{x}=4-\frac{1}{z}\) càng gần = 0 

\(\Rightarrow x\)càng lớn

\(\Rightarrow M\) càng bé nhưng giá trị chỉ dần về 0 chứ không thể bằng 0 được. 

Vậy đề trên là sai. 

NV
23 tháng 11 2019

a/ \(\frac{2x+1}{\sqrt{x^2+2}}+\left(x+1\right)\left(\sqrt{1+\frac{2x+1}{x^2+2}}-1\right)+2x+1=0\)

\(\Leftrightarrow\frac{2x+1}{\sqrt{x^2+2}}+\frac{\left(x+1\right)\left(2x+1\right)}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+2x+1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{1}{\sqrt{x^2+2}}+\frac{x+1}{\sqrt{1+\frac{2x+1}{x^2+2}}+1}+1\right)=0\)

\(\Rightarrow x=-\frac{1}{2}\)

b/ \(Q\ge\frac{\left(x+y+z\right)^2}{xyz\left(x+y+z\right)}+\frac{\left(x^3+y^3+z^3\right)^2}{xy+yz+zx}\ge\frac{x+y+z}{xyz}+\frac{\left(x^2+y^2+z^2\right)^3}{\left(x+y+z\right)^2}\)

\(Q\ge\frac{27\left(x+y+z\right)}{\left(x+y+z\right)^3}+\frac{\left(x+y+z\right)^6}{27\left(x+y+z\right)^2}=\frac{27}{\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}\)

\(Q\ge\frac{27}{64\left(x+y+z\right)^2}+\frac{27}{64\left(x+y+z\right)^2}+\frac{\left(x+y+z\right)^4}{27}+\frac{837}{32\left(x+y+z\right)^2}\)

\(Q\ge3\sqrt[3]{\frac{27^2\left(x+y+z\right)^4}{64^2.27\left(x+y+z\right)^4}}+\frac{837}{32.\left(\frac{3}{2}\right)^2}=\frac{195}{16}\)

"=" \(\Leftrightarrow x=y=z=\frac{1}{2}\)

23 tháng 11 2019

Nguyễn Trúc Giang, Duy Khang, Vũ Minh Tuấn, Võ Hồng Phúc, tth, No choice teen, Phạm Lan Hương,

Nguyễn Lê Phước Thịnh, @Nguyễn Việt Lâm, @Akai Haruma

giúp em vs ạ! Cần trước 5h chiều nay ạ

Thanks nhiều

29 tháng 5 2015

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)

\(\Leftrightarrow2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le1\)

\(\frac{1}{x+y}+\frac{1}{y+z}\ge\frac{4}{2x+y+z}\Rightarrow2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge4\left(\frac{1}{2x+y+z}+\frac{1}{2y+z+x}+\frac{1}{2z+x+y}\right)\)

\(4M\le1\Leftrightarrow M\le\frac{1}{4}\)     \(M=\frac{1}{4}\Leftrightarrow x=y=z=3\)

20 tháng 5 2019

\(M=5\left(x+y+z\right)^2+\left(x^2+y^2+z^2\right)+2.\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

Áp dụng BĐT Cauchy-schwarz ta có:

\(M\ge5.\left(\frac{3}{4}\right)^2+\frac{\left(x+y+z\right)^2}{3}+2.\frac{\left(1+1+1\right)^2}{4\left(x+y+z\right)}=5.\frac{9}{16}+\frac{\frac{9}{16}}{3}+2.\frac{9}{\frac{4.3}{4}}=9\)

Dấu " = " xảy ra <=> a=b=c=1/4  ( cái này bạn tự giải rõ nhé)

20 tháng 5 2019

:D. cái gì đây

15 tháng 7 2017

Ta có:

\(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\) (1)

Hiển nhiên suy ra được BĐT Am-Gm

Áp dụng (1) ta được:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z};\frac{1}{z}+\frac{1}{x}\ge\frac{4}{z+x}\) 

Cộng các vế BĐT ta được

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\) (2)

Tương tự như vậy ta có:

\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{y+z}\ge2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\) (3)

Áp dụng (2) và (3)  ta được:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge4\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\) 

\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\) 

Vậy Max A = 1  

31 tháng 12 2016

Ta có:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{x}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\ge\frac{4}{x+y}+\frac{4}{x+y}\ge\frac{16}{x+2y+z}\Rightarrow\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)\(TT:\)

\(\frac{1}{2x+y+z}\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right);\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)\\(S\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\)

18 tháng 12 2019

\(\frac{16}{2x+y+z}=\frac{16}{x+x+y+z}\le\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\)

Tương tự:

\(\frac{16}{x+2y+z}\le\frac{1}{x}+\frac{2}{y}+\frac{1}{z};\frac{16}{x+y+2z}\le\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\)

Cộng lại:

\(16P\le4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=16\Rightarrow P\le1\)

dấu "=" xảy ra tại \(x=y=z=\frac{3}{4}\)

NV
24 tháng 9 2020

\(P=\frac{1}{x+x+y+z}+\frac{1}{x+y+y+z}+\frac{1}{x+y+z+z}\)

\(P\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)\)

\(P\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1007}{2}\)

\(P_{max}=\frac{1007}{2}\) khi \(x=y=z=\frac{3}{2014}\)

2 tháng 5 2020

Áp dụng công thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y>0\right)\)

Ta có \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{y+z}\right)\)

\(\frac{1}{y+z}\le\frac{1}{4y}+\frac{1}{4z}\)

=> \(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{2x}+\frac{1}{4y}+\frac{1}{4z}\right)\left(1\right)\)

Tương tự \(\hept{\begin{cases}\frac{1}{x+2y+z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{2y}+\frac{1}{4z}\right)\left(2\right)\\\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{2z}\right)\left(3\right)\end{cases}}\)

(1)(2)(3) => \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

=> \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)