K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 5

Lời giải:

$BC=\sqrt{AB^2+AC^2}=\sqrt{18^2+24^2}=30$ (cm) - áp dụng định lý Pitago.

Nửa chu vi tam giác: $p=(AB+BC+AC):2=(18+24+30):2=36$ (cm) 

Diện tích: $S=AB.AC:2=18.24:2=216$ (cm2)

Áp dụng công thức:
$S=pr$ với $r$ là bán kính đường tròn nội tiếp tam giác.

$r=\frac{S}{p}=\frac{216}{36}=6$ (cm)

7 tháng 11 2018

Ta có:    A B 2   +   A C 2   =   B C 2   (   3 2   +   4 2   =   5 2   )

 Suy ra, tam giác vuông tại A.

Diện tích tam giác ABC là:   S = 1 2 . A B . A C = 6

Nửa chu vi tam giác:  p = 3 + 4 + 5 2 = 6

Bán kính đường tròn nội tiếp của tam giác là: r = S p = 1

ĐÁP ÁN A

25 tháng 10 2019

Bán kính đường tròn ngoại tiếp tam giác = 15cm

3 tháng 3 2016

hình bạn tự vẽ nha

gọi o là trung điểm của BC suy ra O là tâm đường tròn ngoại tiếp tam giác ABC suy ra OA=OB=OC=15 cm suy ra BC=30cm

xét tam giác AhO có góc AHO bằng 90',

OH=\(\sqrt{\left(OA^2-AH^2\right)}\)  = 4,2

ta có : OB=OH+BH suy ra BH=OB-OH suy ra BH=10,8\(\)

XÉT tam giác ABC co góc BAC=90' , đường cao AH

\(AB^2=BH.BC\) = 10,8.30=324  suy ra AB=18

\(AC^2=BC^2-AB^2\) suy ra AC=\(\sqrt{\left(BC^2-AB^2\right)}\)  suy ra AB=24

suy ra AB+AC=42

17 tháng 1 2017

15(cm) nha bạn

17 tháng 1 2017

= 15 cm

13 tháng 3 2016

BC và AK cắt BC tại H.Ta có HB=HC (AK là trung trực của BC) 
=>HC=BC/2. 
AH=√(AC²-CH²); 
∆ACH~∆COH (tam giác vuông chung góc nhọn tại O) 
=>AH/AC=HC/CO=>CO=AC.HC/AH. 
=20.12/√(20²-12²)=20.12/16=15.

13 tháng 3 2016

 Gọi AH, BK là hai đường cao, có AH = 10; BK = 12 
thấy hai tgiác CAH và CBK đồng dạng => CA/AH = CB/BK 
=> CA/10= 2CH/12 => CA = 2,6.CH (1) 
mặt khác áp dụng pitago cho tgiac vuông HAC: 
CA² = CH² + AH² (2) 

thay (1) vào (2): 2,6².CH² = CH² + 102 
=> (2,6² - 1)CH² = 102=> CH = 10 /2,4 = 6,5 
=> BC = 2CH = 13 cm 

14 tháng 11 2023

\(\Delta ABC\) vuông tại A

\(\Rightarrow BC^2=AB^2+AC^2\) (Pytago)

\(=5^2+12^2\)

\(=169\)

\(\Rightarrow BC=13\left(cm\right)\)

Gọi R là bán kính cần tìm

\(\Rightarrow\) Bán kính đường tròn ngoại tiếp \(\Delta ABC\):

\(R=\dfrac{BC}{2}=\dfrac{13}{2}=6,5\left(cm\right)\)