K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\times BC\times AH=\dfrac{1}{2}\times60\times40=1200\left(cm^2\right)\)

b: Vì \(AM=\dfrac{1}{3}AC\)

nên \(S_{ABM}=\dfrac{1}{3}\times S_{ABC}\)

Vì N là trung điểm của AB

nên \(S_{AMN}=\dfrac{1}{2}\times S_{ABM}=\dfrac{1}{6}\times S_{ABC}\)

Vì D là trung điểm của BC

nên \(S_{ADB}=S_{ADC}=\dfrac{1}{2}\times S_{ABC}\)

Vì \(AM=\dfrac{1}{3}AC\)

nên \(CM=\dfrac{2}{3}CA\)

=>\(S_{CDM}=\dfrac{2}{3}\times S_{CDA}=\dfrac{2}{3}\times\dfrac{1}{2}\times S_{ABC}=\dfrac{1}{3}\times S_{ABC}\)

Vì N là trung điểm của AB

nên \(S_{BND}=\dfrac{1}{2}\times S_{ADB}=\dfrac{1}{4}\times S_{ABC}\)

Ta có: \(S_{AMN}+S_{MDC}+S_{NBD}+S_{MND}=S_{ABC}\)

=>\(S_{MND}=S_{ABC}\left(1-\dfrac{1}{3}-\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{1}{4}\times S_{ABC}\)

=>\(S_{MND}=\dfrac{1}{4}\times1200=300\left(cm^2\right)\)

DD
19 tháng 6 2021

Diện tích tam giác \(ABC\)là: 

\(60\times40\div2=1200\left(cm^2\right)\)

Có: \(S_{ABC}=S_{ANM}+S_{BND}+S_{CDM}+S_{DMN}\)

\(\Leftrightarrow S_{DMN}=S_{ABC}-S_{ANM}-S_{BND}-S_{CDM}\)

Để tích diện tích tam giác \(DMN\)ta sẽ tính diện tích các tam giác \(ANM,BND,CDM\)

\(S_{AMB}=\frac{1}{3}\times S_{ABC}\)(chung đường cao hạ từ \(B\)\(AM=\frac{1}{3}\times AC\)

\(S_{ANM}=\frac{1}{2}\times S_{AMB}\)(chung đường cao hạ từ \(M\)\(AN=\frac{1}{2}\times AB\))

suy ra \(S_{ANM}=\frac{1}{2}\times\frac{1}{3}\times S_{ABC}=\frac{1}{6}\times S_{ABC}\).

Một cách tương tự, ta cũng suy ra được \(S_{BND}=\frac{1}{2}\times\frac{1}{2}\times S_{ABC}=\frac{1}{4}\times S_{ABC}\)

\(S_{CDM}=\frac{1}{2}\times\frac{1}{3}\times S_{ABC}=\frac{1}{6}\times S_{ABC}\)

\(S_{DMN}=S_{ABC}-S_{ANM}-S_{BND}-S_{CDM}\)

\(=S_{ABC}-\frac{1}{6}\times S_{ABC}-\frac{1}{4}\times S_{ABC}-\frac{1}{6}\times S_{ABC}\)

\(=\frac{5}{12}\times S_{ABC}\)

\(=\frac{5}{12}\times1200=500\left(cm^2\right)\)

29 tháng 6 2021

a, - Ta có : \(\left\{{}\begin{matrix}S_{AMD}=\dfrac{1}{2}AM.h\\S_{ADC}=\dfrac{1}{2}AC.h\end{matrix}\right.\)

\(AC=3AM\)

\(\Rightarrow S_{ADC}=3S_{AMD}\)

Lại có : \(\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}BC.h\\S_{ADC}=\dfrac{1}{2}DC.h\end{matrix}\right.\)

\(BC=2DC\)

\(\Rightarrow S_{ABC}=2S_{ADC}=2.3S_{ADM}=6S_{ADM}\)

b, CMTT câu a ta được : \(\left\{{}\begin{matrix}S_{AMN}=\dfrac{1}{6}S_{ABC}\\S_{CMD}=\dfrac{1}{3}S_{ABC}\\S_{BND}=\dfrac{1}{4}S_{ABC}\end{matrix}\right.\)

\(\Rightarrow S_{DMN}=\left(1-\dfrac{1}{6}-\dfrac{1}{3}-\dfrac{1}{4}\right)S_{ABC}=\dfrac{1}{4}S_{ABC}=160\left(cm^2\right)\)

 

 

29 tháng 6 2021

Sai cách lớp 5 rồi

8 tháng 8 2018

khuya rồi gửi đề dài ntn ai làm bn.....

...hỏi từng câu thôi

với lại đề copy đúng ko?(nhiều như vậy mà)

mai hỏi nha....mk ko muốn ngủ nhưng nhác trả lời^^

13 tháng 2 2022

1. Cho tam giác ABC, D là điểm chính giữa cạnh BC, E là điểm chính giữa cạnh AC. Hai đoạn thẳng AD và BE cắt nhau tại I. Hãy so sánh diện tích tam giác AIE và BID.

CHỨNG MINH:

E là điểm giữa của AC

D là điểm giữa BC

=> ED là đường trung bình của tg ABC => ED // AB => khoảng cách từ E đến AB = khoảng cách từ D đến AB

Xét hai tg ABE và tg ABD có chung cạnh đáy AB; đường cao bằng nhau => SABE = SABD

Hai tgiác trên có phần diện tích chung là SAIB nên phần diện tích còn lại = nhau

=> SAIE = SBID

2. Cho tam giác ABC,đường cao AH = 48cm, BC = 100cm. Trên cạnh AB lấy các điểm E và D sao cho AE = ED = DB, trên cạnh AB lấy các điểm M và N sao cho AM = ED = DB, trên cạnh AC lấy các điểm M và N sao cho AM=MN=NC. Tính:

a) Diện tích tam giác ABC.

b) Diện tích tam giác BNC và tam giác BNA

c) Diện tích tam giác DEMN.

CHỨNG MINH:

a) Diện tích tg ABC là: 

48 x 100 x 1/2 = 2400 (cm2)

b) Diện tích tg BNC = 1/3 diện tích tg ABC vì:

- Chung chiều cao hạ từ đỉnh B xuống AC

- Đáy NC = 1/3 AC

Diện tích tg BNC là:

2400 : 1/3 = 800 (cm2)

Diện tích tg BNA là:

2400 - 800 = 1600 (cm2)

c) Diện tích tg ABN = 2/3 ABC vì:

- Chung chiều cao hạ từ B xuống AC

- Đáy AN = 2/3 AC

Diện tích tg AEN = 1/3 ABN vì:

- Chung chiều cao hạ từ N xuống AB 

- Đáy AE = 1/3 AB

Diện tích tg ANE là:

1600 x 1/3 = 1600/3 (cm2)

Diện tích tg AEM = 1/2 AEN vì:

- Chung chiều cao hạ từ E xuống AN

- Đáy AM = 1/2 AN

Diện tích tg AEM là:

1600/3 x 1/2 = 800/3 (cm2)

Diện tích hthang DEMN là:

2400 - 800 - 800/3 = 4000/3 (cm2)

:))

bài 3 chệu :((

1 tháng 2 2023

Hhyyuu

 

 

15 tháng 6 2023

Ta có:

\(S_{ADM}=\dfrac{1}{2}\cdot AM\cdot h\)

\(S_{ADC}=\dfrac{1}{2}\cdot AD\cdot h\)

Mà: \(AM=\dfrac{1}{3}AC\Rightarrow AC=3AM\)

Ta lại có: 

\(S_{ADC}=\dfrac{1}{2}\cdot DC\cdot h\)

\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot h\)

Mà: \(DC=\dfrac{1}{2}BC\Rightarrow BC=2DC\)

\(\Rightarrow S_{ABC}=2S_{ADC}=2\cdot3S_{ADM}=6S_{ADM}\)

b) Chứng minh tiếp tục câu a) ta sẽ có được:

\(S_{AMN}=\dfrac{1}{6}S_{ABC}\)

\(S_{CMD}=\dfrac{1}{3}S_{ABC}\)

\(S_{BND}=\dfrac{1}{4}S_{ABC}\)

\(\Rightarrow S_{DMN}=\left(1-\dfrac{1}{6}-\dfrac{1}{3}-\dfrac{1}{4}\right)S_{ABC}=\dfrac{1}{4}S_{ABC}=\dfrac{1}{4}\cdot600=150cm^2\)

15 tháng 6 2023

bài hình này trong TĐN

A B C E I D

1. Ta thấy tam giác DEC  Và DBE có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng EC, EB bằng nhau nên Hai tam giác DEC, DEB bằng nhau

   Ta thấy tam giác DEI , DAI có chung chiều cao hạ từ đỉnh D mà Đoạn thẳng AI, IE  bằng nhau nên Hai tam giác DIA, DIE  bằng nhau [1]

  Ta thấy hai tam giác AIB, IBE có chung chiều cao hạ từ đỉnh B mà Đoạn thẳng AI, IE bằng nhau nên Hai tam giác ABI, IBE bằng nhau [2]

 Từ [1] và [2] => Hai tam giác ABD và DBE bằng nhau mà hai tam giác DBE, DEC bằng nhau 

                      => Hai tam giác ABD , DEC bằng nhau 

                      => Tổng diện tích DBE, DEC gấp đôi diện tích tam giác ABD mà hai tam giác có trung chiều cao hạ từ B xuống nên đoạn thẳng DC gấp đôi đoạn thẳng AD.

                          Ta thấy hai tam giác AEC và AEB có chiều cao hạ từ A xuống mà đoạn thẳng BE và EC bằng nhau nên hai tam giác AEC và AEB bằng nhau 

                       => Tam giác AEC = 360 : 2 = 180 [cm2 ]

                          Ta thấy hai tam giác DEC và DEA có chung chiều cao hạ từ E mà đoạn thẳng DC gấp đôi AD 

                       => Tam giác AED = \(\frac{1}{3}\)tam giác AEC

                       => Tam giác AED = \(\frac{1}{3}\) x    180

                                                     = 60 [cm2]

                           Từ [1] ta thấy diện tích tam giác ADI =  \(\frac{1}{2}\)  tam giác ADE 

                                                                              =>ADI = 60 x \(\frac{1}{2}\)

                                                                             => ADI = 30 [cm2]

                            Vậy diện tích tam giác ADI = 30 cm2

28 tháng 5 2018

Giải

1)

2)

a) Gọi A là đáy, H là chiều cao

Theo đề bài ta có:

\(\frac{AxH}{2}\) = 72 và \(\frac{A}{12}\)\(\frac{H}{3}\)

\(\frac{A}{12}\) = \(\frac{Hx4}{3x4}\) = \(\frac{Hx4}{12}\)

Vậy A = H x 4

Thế A vào thì ta có:

\(\frac{Hx4xH}{2}\) = 72

\(Hx4^2\)       = 144

\(H^2\)             = 144 : 4

\(H^2\)             = 36

\(H^2\)             = 6 x 6

H                    = 36

Thế H vào thì ta có:

\(\frac{Ax6}{2}\) = 72

A x 6       = 72 x 2

A x 6       = 144

A             = 144 : 6

A             = 24

b)

Nối B với N, ta có: S(NBM) = S( NMC). Vì hai tam giác có chung đường cao hạ từ N xuống BC và đáy BM = MC (*).

Theo bài ra MN // AB, nên đường cao hạ từ B xuống MN bằng đường cao hạ từ A xuống MN. Do đó ta có: S( BMN) = S(AMN). Vì hai tam giác có đường cao bằng nhau, đáy MN chung (**)

Từ (*) và (**) ta có: S(AMN) = S(MNC). Vì hai tam giác có diện tích cùng bằng S(BMN).

Do S(AMN) + S(MNC) = S(AMC)

Mà S(AMC) = 1/2 S(ABC). Vì hai tam giác chung đường cao hạ từ A xuống BC, đáy MC = 1/2 BC.

Vậy S(MNC) = 1/4 S(ABC) = 72 : 4 = 18 (cm2). 

8 tháng 5 2023

a) Xét tam giác APN và NPC có:
+ Đáy AN = 1/4 AC hay AN = 1/3 NC ( giả thiết)
+ Chung chiều cao hạ từ P
* Diện tích tam giác APN= 1/3 diện tích tam giác PNC
* Vậy diện tích PNC = 10 x 3 = 30(cm3)
b) Nối B với N
Xét tam giác PBM và tam giác MPC có:
+ Chung chiều cao hạ từ P xuống đáy BC
+ BM = MC ( theo giả thiết)
* Diện tích tam giác PBM = MPC (1)
Xét tam giác BNM và MNC có:
+ Chung chiều cao hạ từ N
+ BM = MC ( theo giả thiết)
* Diện tích tam giác BNM = MNC (2)
* Từ (1) và (2) ta có diện tích BPN = NPC ( hiệu hai tam giác bằng nhau)
* Diện tích BPN = 30 (cm2)

* Mà diện tích tam giác ANB = diện tích PNB – APN= 30- 10=20(cm²)
Xét tam giác ABN và ABC có:
+ AN = 1/4 AC ( giả thiết)
+ Chung chiều cao hạ từ B
* Diện tích tam giác ABN= 1/4 diện tích tam giác ABC = 20 x 4 = 80 (cm²)