cho góc nhọn XOY. A∈Oy A∈Oy vẽ AB⊥OX AB⊥OX ; CD⊥OX CD⊥OX;BC⊥OY BC⊥OY ;DE⊥OY DE⊥OY (a;c;e∈OY)(a;c;e∈OY) ; (B;D∈OX)(B;D∈OX)
a) kể tên những cặp đường thẳng song song
b) nêu những góc nhọn bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác MOA và tam giác MOB có :
OM là cạnh chung
MOA = MOB ( vì ox là tia phân giác góc xOy )
OMA = OMB ( = 90 độ )
Nên tam giác MOA = tam giác MOB ( c - c - c )
b. Ta có tam giác MOA = tam giác MOB ( cmt )
Nên MA = MB
Do đó M là trung điểm của AB
Vì vậy OM là đường trung trực của AB
Nhớ tk mk nha !!!
Xét tam giác AMO vuông tại A và tam giác BMO vuông tại B có:
AOM = BOM (OM là tia phân giác của AOB)
OM chung
=> Tam giác AMO = Tam giác BMO (cạnh huyền - góc nhọn)
=> AMO = BMO (2 góc tương ứng) => MO là tia phân giác của AMB
AM = BM (2 cạnh tương ứng) => tam giác MAB cân tại A
có MO là tia phân giác của AMB (chứng minh trên)
=> MO là đường trung trực của AB
a: Xét ΔOBA vuông tại B và ΔOCA vuông tại C có
OA chung
\(\widehat{AOB}=\widehat{AOC}\)
Do đó: ΔOBA=ΔOCA
Suy ra: OB=OC và AB=AC
=>ΔBOC cân tại O
b: Xét ΔABE vuông tại B và ΔACD vuông tại C có
AB=AC
\(\widehat{BAE}=\widehat{CAD}\)
Do đó:ΔABE=ΔACD
Suy ra: AE=AD
Cm: a) Xét t/giác OAB và t/giác OAC
có góc C = góc B = 900 (gt)
OA : chung
góc O1 = góc O2 (gt)
=> t/giác OAB = t/giác OAC (ch - gn)
=> AB = AC (hai cạnh tương ứng)
b) Áp dụng định lí Py - ta - go vào t/giác OAB vuông tại B, ta có :
OA2 = OB2 + AB2
=> AB2 = OA2 - OB2 = 52 - 42 = 25 - 16 = 9
=> AB = 3 (cm)
a: Ta có: ΔOAB cân tại O
mà OI là đường phân giác
nên I là trung điểm của AB và OI là đường cao
b: Xét ΔIHA vuông tại H và ΔIKB vuông tại K có
IA=IB
\(\widehat{A}=\widehat{B}\)
Do đó: ΔIHA=ΔIKB
Suy ra: AH=BK
a: Xét ΔOAI và ΔOBI có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOAI=ΔOBI
b: Ta có: ΔOAI=ΔOBI
=>IA=IB
=>I nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OI là đường trung trực của BA
=>OI\(\perp\)AB
=>Oz\(\perp\)AB
c: ta có: Oz\(\perp\)AB
AB//CD
Do đó: Oz\(\perp\)CD tại I
Xét ΔOCD có
OI là đường cao
OI là đường phân giác
Do đó;ΔOCD cân tại O
Ta có: ΔOCD cân tại O
mà OI là đường cao
nên I là trung điểm của CD
d: Ta có: OB+BD=OD
OA+AC=OC
mà OB=OA
và OC=OD
nên BD=AC
Xét ΔBDC và ΔACD có
BD=AC
\(\widehat{BDC}=\widehat{ACD}\)(ΔOCD cân tại O)
CD chung
Do đó: ΔBDC=ΔACD
=>\(\widehat{BCD}=\widehat{ADC}\)
=>\(\widehat{MCD}=\widehat{MDC}\)
Xét ΔMCD có \(\widehat{MCD}=\widehat{MDC}\)
nên ΔMCD cân tại M
=>MC=MD
=>M nằm trên đường trung trực của CD(3)
Ta có: ΔOCD cân tại O
mà OI là đường cao
nên OI là đường trung trực của CD(4)
Từ (3) và (4) suy ra O,M,I thẳng hàng
a: Xét ΔOAH và ΔOBH có
OA=OB
\(\widehat{AOH}=\widehat{BOH}\)
OH chung
Do đó: ΔOAH=ΔOBH
Suy ra: HA=HB
b: Xét ΔOMH vuông tại M và ΔONH vuông tại N có
OH chung
\(\widehat{MOH}=\widehat{NOH}\)
Do đó: ΔOMH=ΔONH
Suy ra: HM=HN
hay ΔHMN cân tại H
c: HA=AB/2=9cm
d: Xét ΔOAB có
OM/OA=ON/OB
nên MN//AB